CHAPTER

Traffic Handling and Network
Management

This chapter discusses the constituent parts of Differentiated Services. In Philosophical
Investigations, Ludwig Wittgenstein asked, “But what are the simple constituent parts of a
chair?” Then he commented, “It makes no sense at all to speak absolutely of the ‘simple
parts of a chair’” (Wittgenstein 1953).

The definition of the leg, as a simple part of a chair, is better expressed by defining the
leg’s purpose rather than by describing the forms or characteristics of a leg. A leg of a chair
can take many forms: It can be straight or crooked, wooden or metallic, red or blue, and so
on. The purpose of a leg is to support something against gravity. The system of
Differentiated Services is a logical structure—in the sense that the inherent logic of the sys-
tem and the relationships of the various parts make the service differentiation, not the char-
acteristics of the individual parts.

Nevertheless, the parts must be designed as well. As with a chair, after the manufacturer
has clarified the purpose of the chair, appropriate form and material for the legs and back
must be chosen. The main technical parts of the network service are as follows:

= Tools for traffic handling in boundary nodes
= Tools for traffic handling in interior nodes

= Network operation and management systems

This chapter discusses all these aspects.



168 DIFFERENTIATED SERVICES FOR THE INTERNET

6.1 Traffic Handling in Boundary Nodes

The role of boundary nodes as they relate to traffic management was discussed in the sec-
tion “Traffic Classification and Conditioning” in Chapter 3, “Differentiated Services
Working Group.” This section now takes a closer look at the mechanisms needed for
proper traffic control. There are four basic phases of traffic handling:

1.Setting the target, or goal
2.Collecting information
3.Making the decision

4. Executing the decision

Defining the target could be the most difficult task. You could say something general, such
as that the result of traffic handling should be fair, efficient, and robust; or something spe-
cific, such as that each flow should obtain predefined quality requirements. Many impor-
tant questions are situated in the middle ground between these extremes, actually they
consist as both general and specific aspects. This chapter focuses on the aspects of the mid-
dle ground that may associate the general targets to specific mechanisms of Differentiated
Services.

It is useful, once again, to recall that several service models with different requirements
exist. Many, although not necessarily all, models can be mapped in the structure shown in
Figure 6.1. A customer, or actually an application, sends a flow of packets to the network.
Customers and applications do not, however, observe the network directly; instead, they
observe a service structure specified by the service provider.

In a genuine Differentiated Services network (in the sense that not only the traffic control
inside the network but also the customer service is based on the Differentiated Services
model), service structure may be composed of a couple of service classes. The fundamental
characteristic of a class is that it offers reasonable service for a packet flow, where reasonable
means that someone has made a reasoned selection for each flow. But who makes that selec-
tion? The possibilities range from a pure application model in which the application auto-
matically selects a preferable service class to a customer model in which the network selects
an appropriate service class based on the customer contract regardless of the application.
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Figure 6.1 Differentiated Services from a customer’s perspective.
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The overall system should allow simultaneous use of different models. Figure 6.1 presents
an approach in which the PHB class is selected based primarily on the requirements of the
application. Each class consists of several importance levels, emphasizing the need to have
one unambiguous importance dimension inside the network, as described in section 4.5.2,
“Importance,” of Chapter 4, “General Framework for Differentiated Services.”

Although the selection of the PHB class is based mainly on the requirements of the appli-
cation, the selection of the importance level has more to do with the customer contract.
The customer contract, or SLA (see the section “Architecture Model” in Chapter 3),
defines the relationship between the incoming traffic stream and the importance level for
every service class: The higher momentary load, the lower importance. Furthermore, pack-
ets belonging to the lowest importance level might be discarded immediately. Although
this structure does not cover all possible service models, it forms a good basis for evaluat-
ing traffic-control mechanisms. It should also be noted that because the selection process
can be dynamic, as described in the section “Service Models” in Chapter 3, this model is
actually quite comprehensive.

The implementation of the system illustrated in the figure can be based on the model pre-
sented in the architecture document titled “An Architecture for Differentiated Services”
(Black, Blake, Carlson, Davies, Wang, Weiss 1998). You can use Figure 3.8 in Chapter 3
with slight modifications. In Figure 6.2, classification means the selection of PHB class,
and marking means the selection of the importance level. Note that here importance refers
to the situation inside the network, and does not usually directly relate to the relative
importance of different packets of one flow.
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Figure 6.2 The main building blocks of traffic handling.
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Moreover, based on the classification and marking result, the network can either delay
some packets (that is, shape the traffic flow) or even drop packets. Nevertheless, it often
seems more reasonable, for reasons discussed later in this chapter in section 6.1.4, “Traffic

Shaping,” to shape the traffic flow before metering and marking, perhaps in the customer’s
network.

In summary, the main elements of traffic handling in boundary nodes are classifier, meter,
marker, shaper, and dropper. The main purpose of the whole system is to support the ser-
vice model applied by the service provider, and therefore, the characteristics of the mecha-
nisms cannot be assessed without defining the service model to some extent.

6.1.1 Classifiers

A classifier is a mechanism used to select the PHB class for a traffic flow. Although this is
quite a straightforward task technically, some scalability problems could result if a large
number of issues are taken into account. Because this question depends on the service
model adopted by the service provider, it is necessary to refine the issue. The following
models, differing in the classification method, can be identified:

1. The user selects a definite service class from the available classes.
2. The application automatically selects a preferable service class for each flow or packet.

3. The network selects an appropriate service class based on information about the
application.
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4. The network selects an appropriate service class based on the customer contract regard-
less of the application.

5. A combination of the first four approaches.

Note, in particular, that the classification should not depend on the result of traffic meter-
ing, because all packets belonging to a flow should be classified in the same class.

The main requirement of the first approach is that there should be a method to transmit
classification information between customer and network. If the customer is not satisfied
with one service class for all flows, a sufficient dynamics of signaling is required. This
method, without additional mechanisms, does not allow the simultaneous use of several
classes—for instance, one class for an IP telephony application and another one for data
transfer.

Therefore, the second approach in which the application informs the network seems to be
more practical. In a Differentiated Services framework, a sensible scheme is to use the same
DS codepoints between the customer and network as inside the differentiated network.
Then the classification problem can be solved in such a way that the application selects a
DSCP codepoint that it expects to be the most appropriate for the application. A video-
conference application, for example, may select the highest importance level of the real-
time PHB class for all packets. Thus, if the customer is not allowed to use the selected
class, the network operator can use the default service for those packets.

One problem with the second approach is that it requires the capability to set an appropri-
ate DSCP codepoint in the customer’s equipment. If that kind of mechanism is not avail-
able, the only reasonable choice is to classify the packets in the boundary node (third
approach). It is likely that a standard mapping is available for all widespread applications.

It is also possible that each customer has access only to predefined PHB classes. In the
extreme case (the fourth approach), each customer can use only one PHB class. Then the
classification problem is trivial: All packets of one customer are classified in one PHB class.

Finally, it is possible to combine different approaches. For instance, the boundary node
usually selects the PHB class based on the identified application, but if the application has
already marked packets with a predefined DS codepoint, the boundary node does not
make any change of codepoint.

6.1.2 Meters

The main purpose of traffic metering, with regard to Differentiated Services, is to make it
possible to sort the classified packets into the right importance level. The primary approach
is that the ensuing decisions (marking, shaping, and dropping) are based on the measuring
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result of the class to which the packet belongs. It also is possible that the packet marking
takes into account several measuring results. If there are two classes—real-time and data,
for example—the user can either divide his capacity (permanently) between the classes or
use the whole capacity continuously for both classes. In the latter case, the marking of each
packet depends on the measuring result of both classes. Therefore, it is usually necessary to
measure every PHB class separately. The rest of this section addresses the issue of traffic
metering of one PHB class.

The Target of Metering

The combination of traffic metering and traffic marking is a very critical issue for the gen-
eral characteristics of the network service. Therefore, it might be useful to recall the four
aspects defined in Chapter 1, “The Target of Differentiated Services,” used to assess the
target of traffic metering:

= \ersatility
= Cost-efficiency
* Fairness

= Robustness

Whatever method the service provider decides to use for measuring traffic, it has to work
properly in all situations even with a mixture of strange traffic patterns. This does not
mean, however, that the method should work optimally in every imaginable case.

Cost-efficiency dictates that the method should be as simple as possible, but with the
appropriate level of flexibility. Even though someone may invent a theoretical model that
promises a perfect result, it is useless if the model is too complicated for any practical
implementation. For instance, a model with 10 different mechanisms for 10 time scales
could be, in theory, much better than a scheme with only one or two mechanisms with
four parameters. The simple model could be much more practical, however, if it provides a
satisfactory result. Consequently, the primary goal is a simple, but versatile enough model.

The other two aspects, fairness and robustness, should be used to further assess the mea-
suring methods. Again, it should be stressed that the overall target is the key. Simply put,
the target is to provide a fair share of network resources in a robust manner.

One interpretation of fair share is that for a given quadruple of {PHB class, importance
level, point of time, link}, the price of a packet is approximately the same (here the term
price should be understood very generally). Unfortunately, because of the inherent com-
plexities of pricing issues, this interpretation is not such a clear statement as is it may
appear. It might be clearer, therefore, to express the target in another way:
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A fair share means that for a given quadruple of {PHB class, importance level, point of
time, link}, the price of a packet reflects appropriately the service model applied by the
service provider. (This statement ignores the fundamental question of what is a fair ser-
vice model.)

You may even be able to make some inferences from this statement. Figure 6.3 shows two
possible service models with essentially different targets. In the guaranteed-service model,
the packets under a predefined bit rate obtain the best possible treatment (related to delay
and loss probability); all excessive packets, on the other hand, are either marked with low-
est importance or dropped immediately. In the resource-sharing model, a (virtually) con-
tinuous importance function is needed to inform the interior nodes about the relative
amount of resources used by customers. Apparently, different characteristics are needed for
these two service models.

In the guaranteed-service model (as well with several other service models), it is only nec-
essary to know whether a limit is exceeded. In the case of the resource-sharing model, the
metering gives information about the instantaneous bit rate, or more generally, about the
amount of resources needed to transmit the packet flow through the network.

Figure 6.3 Desired measuring principle for guaranteed service and resource-sharing service.
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Note also that not only bit rate, but also packet rate can sometimes be an important factor.
For a given link speed, the number of packets that the router has to handle each second
depends on the packet size: The smaller the packets, the harder the processing require-
ment. Therefore, it can sometimes be reasonable to give more weight to small packets by
using an extra term (B,), as shown in Formula 6.1.
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Formula 6.1

B, = ¢,*B;,real + (1-c,)*B,
The component c, is a constant between 0 and 1, B;, real is the real size of the IP packet |
and B, is the “standard” packet size. If ¢, is 1, the result is the real amount of bytes, and
¢, = 0 means that only the number of packets is taken into account, not the packet sizes.
Note that this is only one example of many possible schemes to take this requirement into

account.

Measuring Principles

A long tradition of traffic measurements (well, at least long in a network-specific sense)
means that there are many ways to manage traffic. This brief introduction to this complex
issue concentrates on only a few typical models. As to the first goal (to evaluate whether a
limit has been exceeded), the prevalent standard is to apply a token bucket scheme. See,
for example, “General Characterization Parameters for Integrated Service Network
Elements” (RFC 2215) and “An Architecture for Differentiated Services” (RFC 2475).

The Token Bucket Principle The basic principle of token bucket is that a bucket of capacity
b is emptied by a constant rate of r. (Note that leaky bucket is often used as a synonym for
token bucket.) The result of this formula measures whether the bucket is empty (or more

accurately, whether there are enough tokens available for the incoming packet).

Token bucket is a reasonable and prevalent way to classify packets into two classes that can
be called in profile and out of profile, where the profile is defined by the two parameters, r
and b. Consider a simple example with an on/off source. This kind of source can be
defined by three parameters:

= Average bit rate (A)

= Peak bit rate (P)

= Burst size (B)

For a given pair of b and r, each source defined by a triple (A,P,B) can be classified either

as conforming or nonconforming flows (that is, some packets do not get a token). For
instance, if

P = 10*A
b = 5KB
and r = 100kbps

the classification shown in Figure 6.4 results. The clarity of the token bucket principle
stems from the fact that for every source with A <r and B < b, the packets of the flow are
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classified as conforming. Furthermore, if P <, all packets are conforming regardless of
burst size.

Figure 6.4 Conforming and nonconforming flows measured by token bucket and by
exponential moving average.
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Measuring Bit Rates Another simple alternative is to measure the momentary bit rate at
the arrival time of packet j, M(tj), by using the exponential moving average, as shown in
Formula 6.2.

Formula 6.2

M(t;) = M(t;-1)*exp{[t;-t;-11/?} + B/t
In Formula 6.2, B, is the size of the packet size in bytes, and defines the measurement

period. An alternative simple method is based on windows (see Formula 6.3).

Formula 6.3

M(t;) = sum(Bjit =2 t; > t; - 1)/1
This bit rate is the average bit rate over a period t1. It should be noted that the window
method requires more memory because all the arrival times and packet sizes during the

measuring period should be kept in the memory.

Both formulas produce a minimum bit rate for each value of packet size: B,/. If the packet
size is 500 bytes and the measuring period is 10 milliseconds, for example, the smallest
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measuring result is 500*8/0.01 = 400kbps. This is a quite high value for an individual
flow and, therefore, the measuring period should be longer if possible.

It is not clear why the measuring period should be short in general. What would happen if
you applied an essentially longer period (for example, 10 seconds)? As to the fairness, the
guestion can be asked in the following way: If each customer (i) is promised to obtain bit
rate R,, or a share S; of network resources, what is the period on which the share or band-
width should be determined? You may have different answers, ranging from one millisec-
ond to one month. If your answer is relatively long (say, one hour), totally different traffic
processes are considered equal.

A flow (F1) with constant bit rate of 10kbps is considered equal to another flow (F2) with
one 10-second burst once an hour with a bit rate of 3.6Mbps, for example. This result seems
to be inappropriate. If the period is 10 seconds, flow 2 is considered equal to a flow F3 with
a permanent constant bit rate of 3.6Mbps. This result also seems to be inappropriate.

One solution to this dilemma is that instead of one measuring period, there are two (or
even more). The total measuring result can be of the form shown in Formula 6.4.

Formula 6.4
M(t;) = c, *{M(t;-1)*exp{[t;-t;-11/t,} + B;/t,} +
(T-cy)*{M(t;-1) *exp{[t;-t;-11/t,} + B;/t,}
Whether this additional complexity provides enough advantages is hard to assess without
practical experience. With flat-rate pricing, the answer can be positive; with time pricing,
however, the answer is most likely negative.

6.1.3 Packet Marking

Packet marking has two basic targets, as described in the preceding section. The first is to
mark packets below and above a given threshold for bit rate. This can be generalized to a
system with several thresholds. The second target is to somehow reflect the smoother
function in Figure 6.3—that is, how much below or above the measuring result is com-
pared to a standard value. From the perspective of Differentiated Services, the main objec-
tive in both cases is to map packets into one of the available importance levels of the PHB
class used by the flow. When the measuring results are available, the actual marking is a
mere technical issue.

There is a degree of freedom to build different models if the system provides measuring
results on different levels of aggregation. The actual marking may depend on the measuring
result of the particular PHB, of total traffic sent by the customer, and of the total traffic
load of the end user’s organization. Very complicated models are not recommended because
of the additional management burden and higher probability of erroneous configurations.
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Furthermore, an additional issue may have a significant effect on the robustness of the sys-
tem. There are two marking principles:

= When a packet exceeds a threshold, it is marked as low importance, but it is not used to
determine the load level of the following packets. Effectively, the allowed bit rate of the
higher importance level is totally independent of the load of lower importance level.
This principle is usually used with the token bucket system.

= When the momentary load level exceeds a threshold, every packet is marked with lower
importance. This principle seems to be more reasonable with several importance levels,
in particular, if the intention is to offer different availability levels.

The following example illustrates the fundamental difference between these principles.
Suppose, for example, that there are three importance levels with packet-loss ratios O,
0.01, and 1, and thresholds between the levels are 1 and 2. In marking method M1, the
system marks as many packets as possible with the highest importance level, or with the
intermediate importance levels if there are packets that cannot be put into the highest
level.

In method M2, all packets are marked with the same importance level based on the bit
rate of the flow: If the threshold is below 1, all packets attain highest importance; if the
threshold is above 2, all packets get the lowest importance.

Now the final effect of packet losses depends crucially on the application that needs the
network service. With certain applications, such as videoconferencing, the value of the ser-
vice does not only depend on the successfully transmitted packets, but the negative value
of a lost packet can be remarkable, because even one lost packet can generate significant
disturbance in the application. Suppose that the value of a successfully transmitted packet is
1, and the value of a lost packet is —1000. (That means that a packet loss ratio of 0.001 or
higher yields a worthless service.) In this case, the result from the user’s perspective is
quite similar with both marking principles, marked by (M1, -1000) and (M2, —-1000) in
Figure 6.5.

Alternatively, if the application is not at all sensitive to packet losses, there is no negative
value for the lost packets. That is, in principle, the case if the application can retransmit
lost packets, and only the total amount of successfully transmitted packets is an important
factor. In this case, there is a significant difference between the two marking methods.
After the bit rate exceeds the second threshold (2), the value for the customer basically
remains constant with marking method M1, whereas marking method M2 results immedi-
ately in zero value for the customer. Therefore, the method M2 induces much stronger
incentive for the customer to control its bit rate and not send excessive packets.
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Figure 6.5 Two marking principles (M1 and M2) with two values for lost traffic (O, —1000).
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6.1.4 Traffic Shaping

The basic idea of shaping is that if a packet should be re-marked to a lower importance
level, an alternative could be to shape the traffic process in such a way that re-marking (or
dropping) is not necessary. Then you would obviously need another metering to deter-
mine whether the result is acceptable, however. In the case of several importance levels, it
can be quite hard to decide when shaping is reasonable and when it is not, because this
issue depends also on the delay constraints.

The user is, of course, allowed to shape the traffic before it is sent to the network. In gen-
eral, that is probably a more reasonable scenario than shaping inside the network. If the
only alternative for shaping is immediate dropping, the shaping option inside the public
network might be reasonable. It is fair to conclude that shaping is usually better to do
before metering and marking, or alternatively, in an integrated unit that could be able to
make an optimal decision.

Therefore, you may consider shaping as something that is done for a given traffic process
to reduce traffic variations, and by that means to improve the treatment inside the net-
work. This is relatively simple action if there is a known target bit rate (or packet rate) and
a known limit for additional delay. In contrast, it is not at all clear whether it is practical to
delay packets to smooth a traffic process for achieving some benefit in some other part of
the network. The two main points seems to be that shaping at the edge may decrease the
delay variations inside the network for some other flows, and statistical multiplexing can be
improved inside the network.
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If the traffic process includes frequent high peaks, the multiplexing target could be realis-
tic. An MPEG type of video coding could generate the traffic in Figure 6.6. In this case, it
surely is reasonable to smooth the regular high peaks if the additional delay is not too long

for the actual purposes of the application.

Figure 6.6 Traffic shaping for an MPEG-coded video stream.
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In that case, Figure 6.7 shows a case in which the traffic process is more irregular and has
significant variations on different time scales. Although the traffic process could somewhat
be smoothed, it is not feasible to even variations on time scales longer than some tens of
milliseconds. If middle- or long-term variations are dominant, the real effect of traffic shap-
ing on statistical multiplexing is likely insignificant. It is actually better to drop some pack-
ets rather than delay them excessively, because that could be the only way to reduce the

load level.

Figure 6.7 Traffic shaping for traffic process with variation on all time scales.
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As to delay target, the main conclusion could be that if there are different flows with dif-
fering delay requirements multiplexed in the same aggregate stream, it could be advanta-
geous to shape streams with loose delay requirements at the boundary nodes as much as
allowed. The main point is that traffic control inside the network is in practice easier with a
smooth traffic process than with high variable traffic, even though in theory the drop and
delay characteristics could be quite similar with and without shaping. A more recom-
mended solution is always to use different delay classes on the one hand, for flows requir-
ing low delay, and on the other hand, for flows with high bit-rate variations.

In particular, if and when traffic control is based on momentary load rather than on long-
term average load, some packets may get essentially better treatment after shaping. In
Figure 6.7, for instance, the boundary node may mark the packets belonging to the high-
est peaks by low importance if it interprets the situation in such a way that the traffic load
is high during the peaks—that is, it does not take into account that the peak rate is used
very briefly.

Figure 6.8 further illustrates the situation. For instance, the decision of packet dropping
may depend on the numbers of packets sent during a control window in a relatively short
period (W). Suppose, for this example, that there are two flows on a link, an on/off flow
(A) and a constant bit-rate flow (B).

If congestion emerges at time T1, the control system notices that there have recently been
more packets in flow A than in flow B. In consequence, the node discards packets from
flow A rather than from flow B. Because the average bit rate of flow B is much higher than
that of flow A, it is more likely that flow B is more responsible for the congestion than
flow A. Depending on several issues, however—such as other traffic flows and buffering
capacity—the situation could be considered the other way around as well.

Figure 6.8 Effect of shaping on the metering result.
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Then if you replace flow A by a smoother flow C with the same average bit rate, the result
could be that the point of congestion is moved from T1 to T2 and the same amount of
packets are discarded as in the original case. The difference is that, in this case, the control
system expects that flow B is more responsible for the congestion than flow C, and as a
result, discards packets from flow B. In this case, the discarding decision seems to be the
right one. In summary, the effect of shaping can be quite dramatic for the application,
although it is possible that the real effect from the network operator point of view is
insignificant (for instance, the total amount of discarded packets remains the same).

6.1.5 Packet Dropping at Boundary Nodes

The last option is to drop packets before they enter the network. Certain services, particu-
larly those using guaranteed connections or leased-line services presented in Figure 5.1 in

Chapter 5, “Differentiation of Customer Service,” may require that nonconforming pack-
ets be discarded immediately. Clear and unambiguous rules and algorithms should be used
with these services, because erroneous packet drops violates the service model.

Although immediate packet dropping based merely on the traffic process sent by the cus-
tomer is somewhat opposite to the fundamental principles of the resource-sharing model,
an additional threshold for every user may restrict the total traffic sent by the customer.
The problem of a straightforward system that controls only the total traffic is that it does
not take into account the differences in packet importance. Customers would surely accept
that some of the least important packets are dropped at the network boundary; whereas
they probably would not approve if any of the most important packets were dropped
immediately. A more complicated dropping system might solve this problem.

6.2 Traffic-Handling Functions in Interior Nodes

Basically the same tools are available both in boundary and interior nodes. There are, nev-
ertheless, certain differences with regard to the main tasks. Boundary nodes are mainly
responsible for packet marking and classification, but the main tasks of internal nodes are
buffering and discarding. In addition, interior nodes may give information about the load
or congestion to traffic sources.

In principle, the same classification as in the boundary nodes can apply to interior nodes as
well. According to the main principles of Differentiated Services, however, interior nodes
classify packets based on the DSCP field of the packet. In that sense, the situation is very
clear. You may still ask whether some other information can be used as well (for example,
the information provided by MPLS). This is surely a possible scenario, but it is not dis-
cussed further here because it is somewhat beyond of scope of Differentiated Services.
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6.2.1 Buffering

A lot has been written about different queuing systems. For an in-depth analysis of the dif-
ferent systems, refer to Queueing Systems, Volume 1, Theory (Kleinrock 1975), Queueing
Systems, Volume 2, Computer Applications (Kleinrock 1975), and Broadband Network
Teletraffic (Roberts 1996). This section does not try to explain every queuing system in
exhaustive detail. The main goal is to give an overview of the most reasonable queuing sys-
tem, particularly from a Differentiated Services perspective.

First In, First Out (FIFO)

The primary model of queuing is first in, first out (FIFO). Because the simplicity is one of
the key goals of Differentiated Services, it can be always considered as the default choice.
A more complicated queuing system should be applied only if a FIFO system cannot offer
appropriate characteristics.

In FIFO the packets that want to use an output link are placed into a queue in the order
in which they were received. In the basic form of FIFO, every packet accepted into the
queue is also transmitted forward, and moreover, packets are discarded only if the queue is
so full that there is not enough space for the incoming packet.

As to the four attributes used for assessing Differentiated Services in this book (fairness,
cost-efficiency, versatility, and robustness), the FIFO system provides certain clear advan-
tages.

Cost-Efficiency FIFO can offer high cost-efficiency because the output link and buffer
capacity are utilized very efficiently (although not necessarily in the absolutely optimal
manner) with a simple mechanism. In that respect, there is not much to be gained with a
more complicated mechanism. On the other hand, there are some significant problems
with the other three attributes.

Fairness As long as all users behave in the same way—that is, they send packets according
to an identical traffic process—FIFO appears to be quite fair. The delay and packet-loss
properties are similar for every flow. That is, however, not a sufficient criteria for fairness,
because a versatile system must also be able to offer fairness among customers with differ-
ent behavior patterns. One of the fundamental problems of FIFO is that the system pro-
vides the same treatment for flows with a very high bit rate and a very low bit rate. That is,
of course, not a problem if the customer is charged according to the bit rate; if the cus-
tomer is charged a flat rate, however, this can be a significant problem.

Robustness Although a part of the fairness problem can be solved merely by providing
appropriate traffic control in boundary nodes, even in the case of pure FIFO buffering
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inside the network, it seems that a high level of fairness requires a more complicated queu-
ing. The same statement is largely valid for robustness as well. A basic FIFO relies com-
pletely on the traffic-control functions in boundary nodes, which may make the overall
system too vulnerable to misbehaving users.

Versatility Moreover, the most critical shortcoming of FIFO from a Differentiated
Services viewpoint is that it definitely does not support quality differentiation, because
every flow going through a FIFO queue recognizes the same delay and packet-loss charac-
teristics. Particularly, delay differentiation is practically impossible to achieve without a
more advanced queuing system in interior nodes.

The main approach applied in this chapter and following chapters is to solve the versatility,
fairness, and robustness problems of FIFO queuing. The following list summarizes the
goals:

= It must provide reasonable tools for differentiation related to delay and loss characteristics.

= It must provide reasonable fairness even in cases where customers have totally different
behavioral properties.

= It must work appropriately even in cases where the traffic control at boundary nodes
does not work perfectly.

Priority Queuing

The first consideration is the issue of delay differentiation. This target can be met by using
one queue for every delay class. In the simplest case, there are two queues with a strict pri-
ority discipline; that is, the lower-priority packet is served only if the higher-priority queue
is empty (when the packet is starting the service).

A basic performance evaluation for the higher class is quite straightforward. If the link
speed is C, the size of the higher-priority buffer is S,,, and the maximum size of packet is
B~max, the maximum delay for a higher-class packet is (S~H,+ B, )/C. For instance, if
link speed is 100Mbps, buffer capacity is 10KB, and maximum packet size is 1KB, the
maximum queuing delay is approximately 0.9 milliseconds.

On the contrary, it is difficult to declare much about the delay of the lower-priority class,
because that issue depends crucially on the traffic load and variations of the higher class.

Yet, if the network operator can guarantee that the load level of the higher class remains

always below a certain value, an evaluation of maximum delay for the lower class can be

made. If the load level of the higher class measured over period T is always less than p,,,

the maximum delay for lower class is bounded by the limit shown in Formula 6.5.
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Formula 6.5

DpaxsL < Py *T + (S, + 8 )/[(1-ry)*C]
In Formula 6.5, s_is the buffer size of the lower class and s, is the buffer size of the higher
class. This approximation is based on the assumption that when a lower-class packet
arrives, the queue of the higher class is full, and in the lower queue there is space exactly
for the incoming packet. To formulate an approximation, you must keep in mind two
factors:

= The time that the higher queue can remain full because of the higher-class traffic

= The time needed to empty both buffers if you suppose that the load of the higher class
remains on the level of p,*c

If s, = 10KB, s, = 1000KB, p,= 0.5 and T = 0.1 seconds, for instance, the maximum delay
for the lower class is less than 212 milliseconds.

The practical problem is how the operator can effectively control the load level of a service
class in interior nodes. It seems apparent that there is not any strict method because the
load on every interior link is not controllable in a pure Differentiated Services networks.
Nevertheless, something can be done for better control of delays as shown in the next sec-
tions. It should be stressed that in all practical implementations, the load level of the low-
delay class should be somehow controlled to keep the packet-loss ratio at an acceptable
level. This is particularly important because small buffers mean that the nodes cannot
absorb a large burst of packets in the same way as larger non-real-time buffers.

Weights for Controlling Delays

The fact that traffic loads cannot be tightly controlled inside a Differentiated Services net-
work makes the delay control problematic. Although the incoming packet stream in an
interior node is largely uncontrollable, the outgoing stream of each service class can be rig-
orously controlled. Suppose, for example, that a PHB class i gets a proportion w; of the
whole link capacity when every queue is non-empty. Moreover, if one or several queues are
empty, the link capacity is divided in proportion to the shares. If you ignore the problems
to realize perfect weights with variable size packets, the maximum delay for class i is that
expressed in Formula 6.6.

Formula 6.6

Dyaxsi = S; /(w;*C)
The main disadvantage of this approach is that although the weights seem to solve the
delay-control problem, the target is attained at the expense of increased problems related
to packet losses.
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You may ask whether there is any fundamental difference between the approach based on
weights and the approach that seeks to directly control the incoming load of each service
class. In a certain sense, there is not much difference, because the weights together with
finite buffer sizes actually control the incoming bit rates after the packet discarding (that is,
R12 and R22 in Figure 6.9). For instance, the maximum average rate at point R12 over a
period of length t is that expressed in Formula 6.7 if the buffer S, is not empty during the
period t.

Formula 6.7

Ry, max(t) = w,*C + S,/t
Therefore, if the load of Class 2 is high, the incoming flow to the Class 1 is controlled
basically in the same way as in the delay-control system based on direct control of incom-
ing traffic presented in the preceding chapter.

Figure 6.9 Bit rates before (R,; and R,;) and after (R,, and R,,) packet discarding.

discarded packets

Weights are, however, better in the sense that they allow the use of total link capacity for
one class when there is no traffic demand in the other class(es). Two key things make the
weight approach better. First, weights yield a control loop from the buffer to the packet-
discarding mechanism. The second key thing is the controlled sharing of the network
capacity. Even the straightforward method to discard packets only when the buffer is full is
definitely better than to discard packets merely based on the incoming bit rates of each
class (R;; and R, in Figure 6.9) regardless of the load in the buffers. This system, by
itself, cannot manage packet-loss ratios if the incoming bit rates (R;; and R,;) are not reg-
ulated. Therefore, both fairness and robustness of this system depend crucially on traffic
control at the boundary nodes.

Table 6.1 shows some numeric values that illustrate the delay characteristics of a queuing
system connected to a 100Mbps link. The buffer size of the real-time class is so small com-
pared to the typical packet size in IP networks that load level has to be low to obtain a
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small packet-loss ratio. Other tools to control packet-loss ratio in case of small buffers are
to limit the maximum packet size and to limit traffic variations. This is the main reason
why the metering function at boundary nodes should be different for real-time classes (as
discussed in Chapter 5 in section 5.3.9 “Variable Bit Rate”).

The maximum delay for the other two classes calculated by Formula 6.6 can be quite con-
servative, because the formula supposes that Class 1 utilizes its whole share all the time. If
and when the average load level of Class 1 remains low—for instance, below 0.3—the real
bandwidth share of the other classes is significantly higher than the theoretical minimum
share. For instance, the capacity used by classes 1 and 2 during a 100-milliseconds period
very seldom exceeds 50%. It should be stressed the figures in the rightmost column are
valid only if the network-management system and the traffic control related to classes 1
and 2 can appropriately limit the load levels of classes 1 and 2.

Table 6.1 Maximum Delay for Three Traffic Classes
Delay Class Share Buffer Size Theoretical Realistic
Kb Maximum Maximum
Delay (ms) Delay (ms)
Class 1 0.75 10 1.07 0.5
Class 2 0.20 50 20 10
Class 3 0.05 500 800 100

Equal Queuing

As discussed in the preceding section, the basic mechanisms that can be used to control
delays are often inappropriate for controlling bit rates or packet-loss ratios. This section
offers an overview of a simple system that can be used to improve the fairness and robust-
ness of FIFO queuing. This discussion uses the general term equal queuing for those sys-
tems that try to divide the link capacity evenly among some entities. The entity can be an
active flow or an aggregate traffic stream—it is up to the service provider to specify the
entity and to use an appropriate system to classify packets according to the specification.

This discussion avoids using the term fair queuing, because equal share is not necessarily
synonymous with fair share. (Note that according to RFC 1254, “Gateway Congestion
Control Survey,” fair queuing is the policy of maintaining separate gateway output queues
for individual end systems by a source-destination pair [Mankin, Ramakrishnan 1991].)

From the Differentiated Services viewpoint, the fundamental difficulty is that interior
nodes are not supposed to keep any per-flow records. Further, even though an equal share
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for every individual user could be considered fair, the same approach is not usually applica-
ble to aggregate streams. What then would be the use of equal queuing in a Differentiated
Services network? One tentative answer is robustness. Although equal share is not neces-
sary an optimal result, and it is not easy to classify packets accurately into meaningful
groups inside the network, even an inaccurate classification may significantly improve the
robustness of the total service system.

Several proposed queuing systems can be classified into this group of queuing systems. A
brief outline of two of them is offered here: Stochastic Fairness Queueing and Fair Buffer
Allocation.

Stochastic Fairness Queueing (SFQ) McKenney suggested Stochastic Fairness Queueing
(SFQ) as a technique to solve the implementation problems of more complicated fair
queuing systems (see Stochastic Fairness Queueing [McKenney 1990] and RFC 1254,
“Gateway Congestion Control Survey” [Mankin, Ramakrishnan 1998]). SFQ classifies
packets according to the source-destination address pair in an incoming packet. SFQ uses a
simple hash function to map the packet with an address pair to one of the available queues.
The hash function means that the assignment of an address pair to a queue is probabilistic.
Therefore, it is possible that packets belonging to different flows are classified into the
same queue. To improve the long-term fairness, SFQ periodically changes the hash func-
tion in a way that the same address pairs do not collide continually.

According to McKenney, you may need to have up to 5 to 10 times more queues than the
number of active source-destination pairs. Note that the activity has in this case a very lim-
ited sense: Only those flows that have at least one packet in the buffer are active. It is pos-
sible to assess the effect of stochastic sharing by a simple mathematical model. The
probabilities that a flow has its own queue or that it has to share the queue with one or
several flows can be calculated from binomial distribution. Table 6.2 shows the result in a
case with 1,000 queues and either 100 or 200 active flows. You can further calculate a the-
oretical value for the available bit rate, if you suppose that SFQ can divide the bandwidth
exactly among all active queues and that the bandwidth of a queue is divided exactly evenly
among flows directed to it.

Table 6.2 SFQ Queuing System Sharing a 10Mbps Link
100 Active Flows 200 Active Flows

Sharing of Probability Bit Rate Probability Bit Rate
Queue (kbps) (kbps)
Alone 0.9057 105.0 0.8195 55.1
With 1 flow 0.0898 52.5 0.1632 27.6
With 2 flows 0.0044 35.0 0.0162 18.4
With 3 flows 0.0001 26.3 0.0011 13.8

With 4 flows 0.0000 21.0 0.0001 11.0
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It should be noted that although SFQ clearly increases the bit-rate variation compared to a
perfect system (that is, equal sharing of bandwidth), the number of active flows is in prac-
tice a variable as well. The user cannot, therefore, expect that the available bit rate for a
flow remains constant in any resource-sharing system. Therefore, the essential issue is
whether the increase of bandwidth variation is acceptable or even noticeable. The final
assessment of SFQ depends on the service model adopted by the service provider: The
more guarantees promised, the more queues needed. Further, because of the stochastic
nature of SFQ, it seems very difficult to use different weights for different flows.

Fair Buffer Allocation In the Fair Buffer Allocation, the interior node keeps track of the
number and/or size of packets in each buffer. When the occupancy level of the buffer
exceeds a certain limit, the queuing system starts to discard incoming packets belonging to
those streams that have the most packets in the buffer. The decision formula proposed in
“A Fair Buffer Allocation Scheme” was originally intended for ATM networks with con-
stant size packets (Heinanen, Kilkki 1995). If you modify it to IP networks with variable-
sized packet, the rule shown in Formula 6.8 results.

Formula 6.8
Discard an incoming packet belonging to stream i

if x>c,and
SMZE{S()} > c, *[1 + (1 -x)/(x—¢,)]

for which

S(i) = buffer space used by stream i
E{S(i)} = average buffer space used by all active streams

x = occupancy level of the buffer—that is, the amount of used buffer space
divided by the total buffer size

¢, should be smaller than 1 to keep the probability of a totally full buffer small
c, defines the lowest occupancy level on which the FBA is active

An obvious result of this system is that the packet-loss ratio of streams with a high bit rate
(or burstiness) is higher than that of smooth streams with a low bit rate. With TCP it
tends to equalize the bit rates of different flows.

Class-Based Queuing (CBQ)

According to Ferguson and Huston, in the book Quality of Service, Delivering QoS on the
Internet and in Corporate Networks, the fundamental goal of CBQ is to prevent complete
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resource denial to any particular class of service (Ferguson, Huston 1998). (See also
“Link-Sharing and Resource Management Models for Packet Networks” [Floyd and
Jacobson 1995].) Hence, the objective of CBQ is to solve the starvation problem of strict
priority queuing. The basic assumption of CBQ is that traffic is classified into relatively
large aggregates according to a principle that depends on the service model. (See section
4.2.2, “Levels of Aggregation,” in Chapter 4.) The three main principles are as follows:

= Requirements of applications
= Price paid by customers

= Organization of the user

Requirements of Applications As to the CBQ, the first option means that flows are
grouped according to the application, and one class can be used simultaneously by a large
number of users. What is the fairness (or robustness) problem that CBQ tries to solve in
this case? Apparently users are grouped according to the application they are using. If a
group is too active or too large compared to other groups, it is considered fair to limit the
available bandwidth for those users. If a user then changes the group—for instance, from
IP telephony to a data application—he may obtain better service because the latter group
happens to be smaller at that moment.

So the fundamental idea is that a group of users should not utilize the whole capacity even
though the application they are using may need higher quality than another application.
What does this statement actually imply? One interpretation is that the importance of an
individual packet depends on the aggregate load level of the class. The more users there
are in the same service class, the less important individual packets are, and vice versa.

Because the relative importance of packets from different classes depends both on the load
levels and on the weights of each class, it is practically impossible to make any useful pre-
dictions for the quality of individual flows. It is not possible to state that the packet-loss
ratio in a class is always lower in Class 1 than in Class 2, for instance. In particular, without
any additional traffic-control mechanisms, this system is vulnerable to misbehaving users.
This application model could, however, be reasonable in certain cases—for instance, in pri-
vate networks.

The following evaluation of other approaches is based mainly on the pricing model—that
is, on the assumption that the main classification criteria is related to pricing.

Higher Price, Better Quality A common claim related to CBQ is that lower relative load
level somehow automatically means better service quality. You can attempt to attain differ-
ent relative load levels either by regulating incoming traffic or by changing the weights
dynamically. Static weights without traffic control, on the other hand, seems to be an
unrealistic approach.
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A simple approach is to just give different prices for different classes (see, for example, the
Paris Metro pricing discussion in “A Modest Proposal for Preventing Internet Congestion”
[Odlyzko 1997]). Another approach could be that each user is allowed to send more traf-
fic if he selects a lower class. (Note that there is actually not much difference between
these two approaches.) Regardless of the mechanism used to induce load differences, one
question remains: In what way is the service of the higher class better than the service of
the lower class? The answer might be more bandwidth or smaller packet-loss ratio or lower
delay, or possibly even a combination of these.

It seems apparent that the loss ratio of every flow within a class is approximately the same
if there is only one importance level in every class. If the load level is the only significant
factor, it seems obvious that both delay and loss characteristics are better in Class 1 than in
Class 2 or 3, if the relative load level is highest in Class 3 and lowest in Class 1. Figure
6.10 shows a possible target of this system.

Figure 6.10 A target for quality differentiation of a CBQ system.
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If the average load level is the only controlled factor, however, the relationship between
delay and loss is not as clear as can be expected. Both low delay and low loss ratio can be
achieved only if the traffic load is somehow controlled within a relatively short period, as
described in the section “Priority Queuing” earlier in this chapter.

A short control period actually means that traffic must be smooth (or the load level must
be extremely low). Unfortunately, high price does not, by itself, encourage smooth traffic.
On the contrary, the first assumption of some customers may be that high price means
freedom to send whatever they want. It is not recommended, in general, to mix delay-
sensitive and bursty data traffic in the same class, even in the case of a low load level. An
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additional mechanism is needed to prevent users from sending highly variable traffic to a
low delay class.

Higher Price, More Bandwidth The general problem with trying to associate high price
with high quality is that the system should also define how the quality depends on the traf-
fic sent by the customer. It does not appear reasonable just to have three classes without
defining the relationship between sent traffic and quality. A CBQ system could have a
more advanced goal, such as within each class, higher bit rate means higher packet-loss
probability. The difference between the classes could then be in the available bit rate.
Figure 6.11 depicts this target system.

Figure 6.11 Target “higher price, more bandwidth” for a service model using CBQ.
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Although this target, or goal, could be achieved by means of CBQ with some additional
mechanisms (discussed later in section 6.2.2, “Discarding,” it is important to ask whether
CBQ is the best tool for trying to attain this goal. Suppose, for example, that flow 1 with a
bit rate of 500kbps uses Class 1, flow 2 with a bit rate 150kbps uses Class 2, and flow 3
with a bit rate 50kbps uses Class 3. According to Figure 6.11, the packet-loss target for
every flow is approximately the same, 10”-5. In this case, the fundamental issue is how

the treatment of these three flows will differ inside the network. The importance of the
packets belonging to each flow is the same, and the bit rate should be controlled in the
boundary node.

Delay is the remaining basic service characteristic. It is not, however, clear why the opera-
tor should associate low delay with high bit rate. Once again, a feasible low delay service
cannot be realized without a mechanism that controls the traffic burstiness.
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Summary of CBQ Although Class-Based Queuing is technically a reasonable approach, it
is somewhat difficult to define a feasible purpose for its application. The three targets iden-
tified here are the requirements of the applications; higher price and better quality; and
higher price and more bandwidth. Each of these could be met with CBQ, and CBQ might
even be practical in some cases. Nevertheless, the fairness criterion of the Internet is that
customers get service proportionate to the price they pay. CBQ doesn’t seem to meet this
expectation; if it did, CBQ is difficult to apply efficiently.

Weighted Fair Queuing (WFQ)

You can find overviews of Weighted Fair Queuing (WFQ) in An Engineering Approach to
Computer Networking: ATM Networks, the Internet, and the Telephone Network (Keshav
1997) and Broadband Network Teletraffic (Roberts 1996). According to Keshay, the intu-
ition behind WFQ is to compute the time a packet would complete a service had a General
Process Sharing (GPS) server been used to service the packets and then to serve packets to
these finishing times. GPS is a theoretical scheduling discipline that shares the bandwidth
exactly in proportion to the weight of the connections.

Three facts make WFQ itself not an attractive approach in Differentiated Services net-
works. First, WFQ requires per-flow queuing. Second, WFQ systems need to know the
weight of each flow, and if the requirement changes, a signaling system is needed to trans-
mit relevant information. Third, WFQ requires quite a hard computational effort. All these
three factors—per-flow queuing, signaling, and complex computation—are avoided in
Differentiated Services networks.

Several variations of WFQ may reduce the computational complexity. These variations
include Self-Clocked Fair Queuing (SCFQ) and Start-Time Fair Queuing (SFQ). (Note
that the abbreviation SFQ is applied in this book usually to the Stochastic Fairness
Queuing). Because all these disciplines require per-flow computations inside the network,
they are not discussed further in this book.

If the principle of WFQ is used to offer fair service between aggregates, there remains the
fairness problem between flows inside the aggregate. Therefore, it is not necessarily useful
to implement complex systems to guarantee optimal fairness between aggregate streams if
there is not any mechanism to provide reasonable fairness within the aggregate. This issue
depends, however, on the service model applied by the service provider. If the service
provider wants to separate the traffic streams among organizations, a variant of WFQ can
be a reasonable solution.
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6.2.2 Discarding

Various methods have been developed to discard packets better than the basic FIFO
queue. In this instance, basic FIFO refers to a queuing system in which packets are dis-
carded only if the queue is so full that there is not enough space for the incoming packet.
Usually the decision to discard is based on the current load level: The higher the load
level, the higher the probability of discarding a packet. There are various ways to imple-
ment this simple idea:

= The load can be measured in several ways. The main approaches are based on the buffer
occupancy level and on the bit rate. Although it is also possible to take into account the
trend (rate of load change), more complicated algorithms may increase the risk of unsta-
ble behavior. Therefore, the starting point should be a simple system based on an aver-
age load level.

= Different time scales can be used from momentary occupancy level to a bit rate mea-
surement over a long period.

e The load can be related merely to the PHB class used by the incoming packet, or it
could be related to the total load.

= Either hard thresholds or smooth probability functions can be applied to make the dis-
carding decision.

The following sections provide an overview of some discarding principles. The target is not
to explain all possible principles, but to emphasize realistic applications for Differentiated
Services networks.

Hard Thresholds

The simplest step from a basic FIFO queue is to classify packets into two importance
groups. Packets with high importance are accepted whenever it is possible, and packets
with low importance are accepted only when the load level is below a certain threshold.
Obviously, this kind of system provides a simple tool to realize two importance levels
within a class (where all packets of a particular class use the same queue).

Although this is a well-known and elaborately studied system, it is difficult to give any
general rule for dimensioning the system—that is, to determine the proper buffer size and
the proper threshold for given quality requirements. Nevertheless, you can take the higher
importance level as a starting point and suppose that it needs a buffer of size B,, to guar-
antee sufficient quality. In this case, the worst case scenario is that the traffic load on the
lower level is not controlled at all and, therefore, keeps the buffer occupancy level steadily
near the threshold. Therefore, the total buffer capacity would be B,, + B, where B, is the
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buffer space available for packets with low importance. The only significant effect of low
importance packets to the high importance packets is the increased delay component.

Although this system can be easily generalized to several levels of threshold, an accurate
analysis of the system becomes very complex. In particular, one fundamental question has
to be answered before any real implementation with several importance levels can be made.
Although a two-level system may work even without any significant traffic control for the
lower-importance level, a network with several importance levels certainly requires a sys-
tematic control mechanism that makes the use of the system logical.

In principle, the system can rely either on the application model or on the customer
model. (See section 4.2.2, “Levels of Aggregation,” in Chapter 4.) One plausible reason
for the opposition of several importance levels in the Internet is that more than two levels
are hardly justified if the service model is based on the different requirements of applica-
tions. Therefore, the purpose of several importance levels has to be sought from the cus-
tomer model instead. And even in that case, the target is not to provide a large number of
distinguishable levels of packet-loss ratio, but rather levels of availability (see section 4.2.1,
“Availability of Quality,” in Chapter 4).

Therefore, the system should support the provision of availability levels in a consistent
fashion. One possible target could be the realization of function presented in Figure 5.10
in Chapter 5 (see section 5.3.3, “Price of Availability,” in Chapter 5). There could be, for
instance, three levels of availability with different prices aimed to cover idle, normal, and
busy hours. In addition, the service provider should take into account the effect of differ-
ent destinations, because the available resources may greatly vary in different parts of the
global Internet. These two dimensions, time and destination, together may yield a need for
several levels of availability, even though at times two levels of importance could be
enough on a certain link for all practical purposes.

Random Early Detection (RED)

Although the previous discussion emphasizes to the need to support customer service with
differentiated pricing, there is one clearly identified need to improve the performance in
case of a pure application model. The problem relates to the interaction between the con-
gestion control of TCP and the “tail drop” principle, where the tail drop means that pack-
ets are dropped only when the queue is full.

The core of the problem is that although certain properties of a TCP control mechanism
are definitely necessary, they result in problems with a pure FIFO queuing. TCP effectively
increases the bit rate of a flow until a packet is dropped. Because the control mechanism
allows the sender to transmit several packets in a burst, a full buffer may generate a situa-
tion in which numerous flows encounter several packet drops. As a result, all these flows
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decrease their bit rate sharply, and then start again to increase their bit rate. In the worst
case, this may result in a global synchronization where the overall load oscillates between
overload and low load levels. For a more detail account of this issue, refer to RFC 2309,
“Recommendations on Queue Management and Congestion Avoidance in the Internet”
(Braden et al. 1998).

Large buffers in IP networks are primarily needed to handle bursts of packets appropri-
ately, not to increase utilization. Note that, in general, the link utilization depends only on
the probability that a queue is non-empty, not on the average number of packets in the
buffer. Therefore, it can be reasonable to drop some packets even before the buffer
becomes full to control the incoming bit rates. In addition, it is desirable that only one
packet per flow is dropped and that drops do not occur exactly at the same time. This kind
of system, Random Early Detection (RED), was first proposed by Floyd and Jacobson in
an article titled “Random Early Detection Gateways for Congestion Avoidance” KC
(Floyd, Van Jacobson 1993, 397-413).

Figure 6.12 illustrates the principle behind RED. Under a certain load level, all packets are
accepted. In such as case, on the middle region the packet-loss probability depends on the
load level. Finally, if the queue, after all, becomes full, all packets are discarded.

Figure 6.12 The principle behind RED.
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RED can be evaluated by using the four attributes guiding this discussion: fairness, cost-
efficiency, robustness and versatility. RED solves certain problems very effectively due to its
simplicity. The increase in complexity compared to FIFO is so small that it does not seem
to be an obstacle even in very high-speed routers.
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Although RED attempts to solve only specific problems, if (and when) it is used in real
networks, network operators and service operators have to be sure that it works appropri-
ately with all applications and services that use queues with RED. In case of large buffers,
an appropriately configured RED probably does not have any significant harmful effect.
On the contrary, it may both reduce average delay and provide a more even packet-loss
ratio among flows than a pure FIFO queue.

In a sense, RED is very fair: The packet-loss ratio is similar with all flows, which means
that flows with a higher bit rate encounter a larger number of losses. But then, once again,
the real fairness depends crucially on the target, or on the service model. If the target is to
share the capacity equally and efficiently, RED serves that purpose well. If the target is
more complicated, as it likely is in Differentiated Services networks, a mere RED could be
a useful, but not a sufficient, tool.

Because RED seems to decrease the probability of some harmful effects, such as global
synchronization, it clearly is more robust than a FIFO system. RED can work effectively
only if the majority of flows apply an end-to-end congestion control, however, such as
TCP. Therefore, it does not solve the fairness and robustness issues related to nonadaptive
flows.

Besides, any system with several free parameters requires additional management effort. To
be really efficient, RED parameters should be properly adjusted to each situation with a
specific traffic process, link capacity, and buffering scheme. Without a profound under-
standing of these issues, the parameters could be incorrectly selected; if that happens, sys-
tem performance could deteriorate.

RED with Several Levels of Importance

The previous chapters separately discussed the need of several importance levels with hard
thresholds, and the need of one soft threshold. If and when both needs are justified in real
networks, you should be able to combine these two into the same system. Technically, this
is a simple issue: Every hard threshold can be replaced by a soft, probabilistic discarding
function. However, a couple of practical issues are not totally clear. Should the RED
regions overlap each other, and should you use RED for all thresholds?

It seems that the primary situation is that RED regions of different importance levels
should not overlap with each other, as shown in Formula 6.9.

Formula 6.9

If 0 < Pryg,(x,p) < 1,
=1

then PPyrop (X5P-1) and PPacop (X;p+1) = 0



CHAPTER 6 Traffic Handling and Network Management 197

The component x is load level, and p is an importance level, and higher numeric value of p
means higher importance, and Prdmp(x,p) is the packet-discarding probability. In addition,
the probability function should be a nondecreasing function, such as this:

Prdrop(xip) 2 Prdmp(y,p) if x> y
Pry0p(0,p) = O (for every p, unless the service provider wants to discard all packets of
lowest importance levels)

Pryop(1,P) = 1 (because 1 means full system)

If the service provider, after all, decides that RED regions should overlap, that means a
weaker separation between adjacent importance levels. Because this is not usually a desir-
able effect, it could be better to separate the RED regions, and even to leave an additional
region between the areas as shown in Figure 6.13.

Figure 6.13 Random Early Detection with two importance levels.

Packet discarding probability

A

14 Hard threshold, ~ cccccacaa-

lower level

Tail dropping,
higher level

0.1—
RED,

lower Ievel\

RED,
higher level

Load level RED regions

Moreover, it is not clear whether a RED mechanism is useful with the highest levels of
importance. With high service levels, the expectation is that packet losses are very rare, and
consequently, it is not reasonable to suppose that the bit rates are adjusted based on packet
losses. If TCP or another control mechanism is not used to adjust the bit rate, there is not
necessarily any significant difference between hard threshold and RED. Yet, there could be
some advantages to using RED also with higher importance levels; for instance, it may dis-
tribute the packet drops more evenly among active flows, and it may give a warning signal
about imminent quality degradation to the users.
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Finally, it is possible that in some cases TCP flows that normally use lower importance lev-
els may exploit higher importance levels by decreasing their bit rate below a certain thresh-
old. Therefore, even though under normal circumstances higher importance levels are used
to transmit something other than TCP flows, under abnormal conditions a significant por-
tion of the traffic could be TCP flows.

In summary, RED is certainly recommended for the dominant service class of the
Internet—that is, for best-effort service with a majority of flows using TCP congestion
control. On the other hand, it is not evident whether RED is advantageous with nonadap-
tive services, although it doesn’t seem harmful.

6.2.3 Feedback Information

The Differentiated Services model is based primarily on the assumption that each user
sends packets into the network according to a traffic process that is essentially independent
of the network service. Packets may request a PHB class based on the requirements of the
application, and the importance level of the packet is set mainly by the boundary node
according to the service level agreement. However, the network does not require that a
PHB class be used only if the traffic process complies with certain rules. The definition of
PHB may, of course, include that when the incoming bit rate exceeds a certain limit, some
packets are discarded immediately. Thus the PHB rules and incoming traffic process
together determine how the packets are treated inside the network—but basically the net-
work service does not dictate the incoming traffic process.

This primary principle appears logical as long as the service is based on the customer
model. (See section 4.2.2, “Levels of Aggregation,” in Chapter 4.) If the service model is
based on the requirements of applications, however, with the assumption that users behave
appropriately, the network operators may use a different approach in which they try to
directly control the incoming traffic process based on the load inside the network.

TCP flow control is one example of this kind of approach (see section 2.3.2 “Basic Best-
Effort Service Based on TCP,” in Chapter 2, “Traffic Management Before Differentiated
Services,” and the previous section in this chapter related to the RED mechanism).
Although TCP relies on the fact that some packets must be dropped during (severe) over-
load, some other schemes are based on softer congestion indication. Further, it is possible
that the network tries to inform the source about the exact available bit rate (see the sec-
tion “Available Bit Rate, (ABR)” in Chapter 2). Because that kind of service model
requires per-flow calculation inside the network, it is chiefly beyond the scope of
Differentiated Services and this book.

Although the current Differentiated Services framework does not include the application
of congestion indication, it may be used later with some PHB classes as proposed by
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Kalyanaraman, et al., in “A One-Bit Feedback Enhanced Differentiated Services
Architecture” (1998). Therefore, this discussion provides a brief overview of two possible
approaches: DECDbit and congestion avoidance in Frame Relay.

DEChit

The fundamental idea behind the DECDbit approach is that the packet header carries a bit
that can be set by a network node when the node is experiencing congestion, as discussed
in “A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with
Connectionless Network Layer” (Jain, Ramakrishnan 1988). The receiver copies the bit to
the acknowledgment packet, and sends it back to the source. Finally, the source is sup-
posed to reduce the sending bit rate when more than 50% of the packets have the conges-
tion bit set; if less than 50% of the bits are set, however, the sender is allowed to increase
the bit rate.

In the basic DEChit scheme, the network nodes make the decision of setting the conges-
tion bit depending on the bit rate of each connection. The nodes set bits first on those
connections that are using more capacity than their fair share. This system apparently does
not comply with the fundamental philosophy of Differentiated Services because it requires
per-flow calculations inside the network. In a simpler scheme, the network node measures
only the aggregate queue length and sets the congestion bit when the average queue
length exceeds a threshold.

The main flaw of the DECDbit approach is that it requires that both senders and receivers
cooperate and be able to adjust their bit rate. If one sender decides to ignore the conges-
tion bit, for example, it may have a harmful effect on all other flows. In such a case, if the
operator tries to control the behavior of all customers, complicated mechanisms are needed
at boundary nodes. This hard problem has to be solved before a DECbit or another simi-
lar scheme can be applied to the global Internet.

Congestion Avoidance in Frame Relay

The congestion avoidance scheme of Frame Relay is similar to that of DECDbit (see, for
example, the FRForum Web site at www.frforum.com). The main difference is that in a
Frame Relay network, nodes may inform both sender (Backward Explicit Congestion
Notification, [BECN]) and receiver (Forward Explicit Congestion Notification [FECN])
about upcoming congestion. In the Internet environment, backward congestion indication
appears impractical, if not impossible, because there is no guarantee that packets in the
reverse direction use the same path.

Although there is no specification as to how the user should react when receiving conges-
tion notification, the basic idea is that end users alleviate the congestion by reducing the
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bit rate somehow. From a fairness point of view, this is obviously a problematic situation
because when some users react and other do not, the final result is an uneven share of
resources.

Moreover, Frame Relay specification also introduces a discard eligible bit. Essentially, this
means that frames can be classified into two importance groups as described earlier in the
section “Hard Thresholds”. In summary, a Frame Relay node may have four states,
depending on the load:

= Low load, where all frames are accepted and no congestion indication bit is set.
= Moderate load, where all frames are accepted but congestion indication bits are set.

= High load, where frames with a discard eligible bit are discarded, and congestion indica-
tion bits are set.

= Full buffer means that all incoming frames have to be discarded.

A similar system is surely possible in Differentiated Services networks—actually, the discard
eligible bit is a natural part of Differentiated Services. On the other hand, the role of con-
gestion indication is not very clear: The network may, of course, set the bit, but what is
the customer supposed to do when he receives a congestion notification?

One approach is to make the congestion notification just extra information provided by
the network; users can use the information or ignore it totally. It seems that to be useful in
Differentiated Services networks, the congestion notification should somehow indicate on
which service (or importance) level the congestion notification is valid. Then, for instance,
if the network informs that some packets on the lowest importance level of a PHB class
must be discarded, the user can reduce the bit rate in such a way that all packets attain
better importance level. Some users, on the other hand, may prefer to use a high bit rate
even at the risk of losing some packets. Both behaviors should be equally acceptable.

6.3 Functions Related to a Network Domain

Most of the standardization effort of Differentiated Services relates to the function inside
network nodes. In addition to these important aspects, a successful service provision
requires a systematic way to manage the whole effort. This section briefly introduces three
key issues related to the operation of a network domain: routing, resource reservations,
and network dimensioning.

6.3.1 Routing

Routing is an integral part of IP networks. Although it is totally clear that routing a system
is necessary, the issues related to the dynamics and QoS aspects of routing are less clear.
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According to the fundamental rules of both IP networks, in general, and Differentiated
Services, in particular, it is not reasonable to apply adaptive routing to individual packets
based on the load in the network (that is, within the packet-forwarding function).

In contrast, it could be reasonable to balance the load of different links on longer time
scales. Consider, for example, the simple network with six nodes shown in Figure 6.14.
Usually the primary route is that with the shortest path. If you calculate the length
between each node pair in the network, you get a result of 1.4 hops. In most cases, the
secondary route is longer than the primary route. The primary route from A to D consists
of two hops, for example, although any other route consists of at least three hops.
Although in some cases the number of hops could be the same, such as between nodes B
and F, the average length of a secondary route is significantly longer, 2.2 hops, than the
average length of the primary route.

As a result, if the load level when using only a primary router is 0.7, and half of the traffic

is shifted (randomly) to the secondary route, the average load level is increased to 0.9. Of

course, random decision is not rational, and the situation could be much better if the deci-
sion is based on some level of optimization. The point is that optimization, or at least fea-

sible reasoning, is necessary when making the decision to use secondary routes.

Figure 6.14 Primary and secondary routes.
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The main reason to use alternative routes is load balancing, which is a part of the larger
problem of long-term network planning, in which the operator tries to optimize the use of
network resources. Load balancing can be defined as the capability to decrease the maxi-
mum load by changing the traffic from links with high load to links with lower load.
Remember, however, that the average load level is increased.

It is possible to decrease the load on links with the highest traffic, for example, but at the
expense of a higher average load in the network. Based on a constricted evaluation of the
network presented in Figure 6.14, it seems that the maximum load among the links can be
decreased by 25% at the expense of a somewhat higher average load level (for instance,
5%). Figure 6.15 shows one example in which the load level of the most loaded link (D-E)
can be reduced from 16 down to 12 by using secondary routes. At the same time, the load
level of most other links is increased.

This useful, albeit moderate, result is more a theoretical possibility than an achievable
proposition in real networks, however, because of the following reasons:

= |t is supposed that the average load levels were exactly known. That is, of course, possi-
ble with past traffic processes, but that does not mean that the future traffic levels are
known.

= |t is not necessarily possible to divide traffic streams arbitrarily among different routes;
for instance, in the case of AF service, different routes for PHBs within one PHB class
cannot be used.

= There is no obvious and simple common goal for optimization; in the example, the goal
was just to minimize the maximum load among all links. In Differentiated Services net-
works, that is not necessarily the right objective because it does not take into account
the relative importance of packets.

= In a large network, it is very hard to solve the complex optimization problem (particu-
larly, if the effects of the first three items are taken into account).

To summarize, even though alternative routes can be useful, especially during extraordi-
nary situations (for instance, if a cable is broken), they probably do not essentially improve
the network performance during normal situations. Load balancing is reasonable, but only
with other appropriate planning and management tools. One possibility in Differentiated
Services networks is to use load balancing mainly for the highest importance levels and to
ignore the effect of the lowest importance levels.
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Figure 6.15 Load balancing using secondary routes.
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6.3.2 Resource Reservation

The general argument of this book relating to resource reservation is that it should be used
only when really necessary, not as the only standardized solution to all quality problems.

Note

The basic characteristics of resource reservation are discussed throughout this book. For
instance, see section 2.4, “Integrated Service Model,” in Chapter 2; the section “Resource
Reservation” in Chapter 4; and the section ““Service-Level Agreement” in Chapter 5.

Considering resource reservation from the perspective of Differentiated Services, the most
practical level of resource reservation is the PHB class. In addition, it could sometimes be
necessary or reasonable to make capacity reservations for large organizations. In both
cases, the rationality of the reservation should be assessed carefully, because reservations
tend to complicate networks and their management and deteriorate statistical multiplexing.

The technical part of resource reservation is mostly beyond the scope of this book. It can
be done either by using an IP protocol, such as RSVP or MPLS, or by using some other
technology, such as virtual paths and virtual connections in ATM networks.
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One way to implement resource reservation is with a bandwidth broker, as discussed in “A
Two-Bit Differentiated Services Architecture for the Internet” (Nichols, Van Jacobson,
Zhang 1997). The idea of a bandwidth broker is, in itself, clear. Rather than using a sig-
naling system to separately ask every node through the path whether there is enough avail-
able resources to support a new flow, the request is handled primarily by one or a couple
of bandwidth brokers. Consequently, an efficient bandwidth broker must have real-time
information about the load within a network domain, and about the prices of all types of
flows.

Although this approach is clearly unsuitable for all short-duration flows in the Internet, it
may offer a reasonable solution for those (rare) cases in which a significant amount of
resources are required through the network and where additional pricing is needed to con-
trol the use of such resources. A bandwidth broker can also be used solely to inform users
about the characteristics and prices of different service classes.

6.3.3 Network Dimensioning

Dimensioning a network that is used to transmit Differentiated Services is an intricate
task. The traffic processes and quality requirements vary almost infinitely—how is it possi-
ble at all to determine appropriate capacities in this kind of situation? It is fair to say that
dimensioning is an almost impossible, albeit inevitable, task for any network operator.

This chapter briefly outlines two starting points for dimensioning. The first one is based on
the methods and models used in connection-oriented network. The second one is mainly
based on the idea that practical experience is your only guide when dimensioning packet
networks with variable traffic processes and quality requirements. Certain other possibilities
exist as well, but they are left to a more specific book.

Connection-Oriented Networks

Quite a lot of theoretical research has been conducted in the area of dimensioning connec-
tion-oriented networks; the history of this research can be traced back to the studies of A.
K. Erlang. What Erlang achieved was a simple, but efficient formula for call-blocking prob-
ability under certain statistical assumptions. If the inter-arrival time between successive call
attempts is an exponentially distributed random variable with mean A, the average holding
time is h, and the number of channels is s, the call-blocking probability is that shown in
Formula 6.10.

Formula 6.10

Pr(blocking) = [(A"S)/S!]/{sum [(A~1)/i!]}
i=0...8)
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A = average offered load = A/n. If the network operator has a rational approximation for
average load level (A) and a target for blocking probability, he can just use the Erlang’s
formula to define the required number of channels.

Although all the theoretical assumptions are not valid in reality, telephone networks have
largely been planned using this formula. Why can’t this be applied to the dimensioning of
packet networks as well? Actually it is possible, supposing that dimensioning is based on the
requirements of reserved connections. Nevertheless, some modifications are needed because
the assumption of equal connections is apparently not valid in multiple-service networks.
Several approaches can be followed—some approaches provide either an accurate result with
complex calculations; other approaches provide a less accurate result with simpler calcula-
tions. (See Chapter 18 in Broadband Network Teletraffic [Roberts et al. 1996].)

Dimensioning of Differentiated Services Networks

The expectation in Differentiated Services networks is, however, that the great majority of
traffic is not using reserved connections (instead, that they are using best-effort kind of
service). Evidently, the whole problem of network dimensioning is then completely differ-
ent. There are no calls, no real holding times, and no call-blocking probabilities; instead,
there are just variable streams of packets. Therefore, the traffic models must rely on a
totally different approach that somehow takes into account the peculiar characteristics of
data traffic.

Dimensioning of a packet network is such a complex task that it cannot be addressed
extensively in this book. Yet, it is one of the primary tasks of any network operator. To get
some level of insight regarding this issue, consider (as a starting point) the evaluation in
section 4.4.3 ““A Model for Evaluating Statistical Multiplexing”, in Chapter 4. In that
framework, the main target of efficient network dimensioning is to reduce the parameter ?.
So what is the essence of parameter ? in Formula 6.11?

Formula 6.11
C(T)IM(0) = M(@)*{1 + y*[e*(1-Q*0,)/ (A *N)]""}
Recall the meaning of the other parameters:

M(0) defines the known, current load level
Parameters a,, 04, and N are used to describe the characteristics of traffic process on the
link.

y defines the desired quality level
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The laborious task of parameter € is to take care of all difficulties and inaccuracies related
to the real task of making real predictions. In particular, even though m(@) can be, in a cer-
tain sense, measured accurately, a lot of practical difficulties exist with the other parameters
and the whole model. First of all, it should be stressed that a,, a,, and N are fictional para-
meters without any right values in real situations. Basically the same concern is valid with
parameter v; it is only a tool that can be used to satisfy a certain quality target without any
guarantee that a certain value of y leads to the same quality level in practice. Therefore,
parameter y tries to give a realistic estimation of effects related to all these factors.

In general, the better you understand the real process, the smaller € is, and consequently,
the better prediction you can make. In theory that is clear, but what can be done in reality
to decrease € Suppose, for example, that you have 10 links to be dimensioned with an
original load of 50Mbps. Without an advanced information system, you must rely on your
earlier experience with link dimensioning and traffic growth. You may suppose that the
expected load of every link at the end of a half-year period is 100 higher than at the begin-
ning of the period.

Further, based on previous experience, you may assume that the typical variance of the
prediction (“error’) is proportional to the mean value, V(t) = [M(t)/2]"2. Moreover, you
know that you need a safety factor € = 4 to keep your customers satisfied. A simple calcula-
tion shows that you must reserve a capacity of 300Mbps for every link.

Note that you did not make any assumption about specific traffic parameters in this simple,
but seemingly practical method. Now, you can just change the relation between V(t) and
M(t) if the result is not satisfactory—that is, you reserved systematically too much or not
enough resources. But that information, however useful, cannot essentially improve your
ability to make traffic predictions.

You can, on the contrary, improve your prediction by acquiring more information about
the load on individual links, because some part of the inaccuracy of prediction is probably
caused by the differences in different links. You can classify the links into two groups
according to the expected growth rate. If the expected load of the first group at the end of
the prediction period is 70Mbps, and the expected load of the other group is 130Mbps,
the variance related to this difference is (30Mbps)”~2. The remaining part of the variance,
(40Mbps)”~2 (note that, 40 = (5072 — 3072)"0.5), can then be supposed to be a result of
statistical traffic variations. In this case, the required capacities are as follows:

Group 1: C(1) = 70 + 4*40 = 230Mbps
Group 2: C(2) = 130 + 4*40 = 290Mbps

This result is certainly promising, but also somewhat surprising because even the links in
Group 2 require less capacity than what was originally estimated. The explanation is that
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additional information about the two groups increases significantly your knowledge of the
situation.

The improvement can be achieved, however, only if the link classification is reasonable in
the sense that the variation inside each group is actually smaller than that of the original
group of all links. On the contrary, if the classification is a random process, the outcome is
probably worse than the original situation without any grouping.

This phenomenon is actually easier to be thought of in the reverse order: First you have
the situation with two groups, and then you lose information about the classification links
according to the growth rate. Then if you know that there are these groups, but you do
not know which group each link belongs to, you can use the value of 290Mbps. Finally,
without any information about the groups, you need 300Mbps capacity for every link.

This example supposed that you could improve the knowledge about growth rates on
individual links. Similar evaluation is valid with other parameters, o, a4, N, or whatever
parameters your model includes. The values of the parameters may vary from link to link,
and if the differences are significant, traffic prediction could be improved by evaluating
individual links or specific groups of links in specific ways rather than evaluating all links in
the same way.

6.3.4 Boundary Nodes Between Network Domains

Differentiated Services provide different quality levels for packets, flows, or aggregate
streams, and these levels may significantly affect the customers’ perception of quality level.
The basic assumption of Differentiated Services is that the use of the quality levels is con-
trolled at the boundary node between customer and service provider. Yet the real situation
is that a packet may traverse through network domains managed by different service
providers.

Should the end users have an SLA with every service provider that ever conveys packets
sent by the end user? No, that is not a realistic approach in the global Internet. The pri-
mary rule has to be that each user has a contract with one service provider (or perhaps
with a couple of them), and that the service provider makes contracts with other service
providers and network operators.

The primary issue is the form of the service contract between different service providers.
Because this is relatively new territory—that is, not many ““real” service providers are offer-
ing Differentiated Services yet, and therefore the future business models are still largely
unknown—it is prudent at this point in time to just briefly consider some realistic scenarios.
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There seems to be three main options for the contract between two service providers:

= Pricing: A device measures the traffic of each PHB in each direction. Based on the
information gathered, either of the providers may pay the other provider compensation.

= Re-marking: An automatic system re-marks packets based on the load level on of all
PHB aggregates.

= Per-flow marking: A similar marking as at the first boundary node between customer
and service provider is also marked at the boundary nodes between network domains.

The last option could be feasible in some special situations, but it cannot be a common
solution among all service providers. In addition, the approach needs a reliable signaling
system to transmit relevant information among all boundary nodes. Therefore, it is not
discussed further in this chapter

Pricing Approach

In essence, this approach means that the aggregate traffic of each PHB is measured in both
directions. Let’s denote the amount of bytes transmitted in PHB Class i on importance
level j by X(i,j) in one direction and by Y(i,j) in the other direction. The compensation (Z)
can be calculated from these factors—for instance, by a linear model such as that shown in
Formula 6.12.

Formula 6.12
Z = sum[c1(i,j)*X(1i,3)] - sum[c2(i,j)*Y(i,j)]
i,j 1,]
In case of two backbone operators, it is possible that c1(i,j) = c2(i,j) for all i'sand j’s.
Moreover, the operators may agree that no compensation is made if the traffic loads are
approximately in balance.

On the contrary, when a small Internet service provider (ISP) is connected to a large back-
bone operator the situation could be totally different. The pricing could be based only on
the traffic sent from the small ISP to the backbone network, for example. It should be
stressed that all these issues relate to business models of service providers and network
operators; they are beyond the scope of any standardization process.

Re-Marking Approach

As with the pricing model, the traffic load of each PHB should be measured individually.
Instead of pricing, the network may re-mark the packets if certain thresholds are exceeded.
Although there are numerous alternatives, some rules seems to be relevant across the
board:
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= Under normal situations, re-marking should be avoided, because it may negatively affect
the overall service.

= Re-marking should be done, if possible, only within a PHB class.

= If a PHB class has only one importance level, and re-marking is needed, the default ser-
vice (used to transmit best-effort traffic) is the secondary choice.

< |f there are enough importance levels, it is better to re-mark all packets systematically
(one step up or down) than to re-mark packets here and there; the systematic approach
helps keep the network service as consistent as possible.

= Although re-marking a packet can be based on the load level of the PHB class used by
the packet, it is sometimes more reasonable to use the total load level with appropriate
weights for each PHB.

It should be stressed that these rules are tentative, and without practical experience it is
impossible to state what is the most practical approach.

You can also combine the pricing and re-marking approaches in several ways. If the pricing
model is your primary approach, for instance, you could also apply load limits to the high-
est PHB classes to limit the possible problems related to PHB marking within a network
domain.

Summary

This chapter discussed several integral issues related to Differentiated Services. The imple-
mentation of traffic classification, metering, marking, shaping, and dropping essentially
determine the service structure. Correspondingly, the requirement of consistent, fair, flexi-
ble, and efficient service makes it necessary to carefully design traffic-handling functions.

Section 6.2, “Traffic Handling Functions in Interior Nodes,” dealt mainly with the different
buffering systems, including FIFO, priority queuing, SFQ, and CBQ. In Differentiated
Services networks, the main constraint for the application of queuing systems is that individ-
ual flows are not supposed to be discernible; instead, all the mechanisms should use the DS
codepoint in the packet. For this reason, the discussion focused mainly on the application of
simple queuing systems in a Differentiated Services environment.

FIFO is the basic choice because of the plain implementation; priority queuing and Class-
Based Queuing (CBQ) provide quite straightforward means to solve some of the funda-
mental problems of FIFO systems. This book recommends always avoiding complex
systems with a large number of adjustable parameters, however, because although they can
be realized, they tend to require additional management and are prone to configuration
errors.
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The main dropping disciplines are to drop packets just when the buffer is full, have several
thresholds for different importance levels, and RED. Different combinations were also
discussed.

The first, simple dropping, is not a sufficient mechanism for implementing Differentiated
Services. A threshold for every importance level is an apparent and feasible approach to
provide quality differentiation. Moreover, RED seems to be the recommendable mecha-
nism to further improve the service performance when the TCP protocol is used in cus-
tomer equipment. The usefulness of RED in a queuing system with several importance
levels is not totally clear, however.

Finally, some elementary functions related to traffic management were discussed in Section
6.3, “Functions Related to a Network Domain.” These discussed functions included net-
work dimensioning and contracts between service providers.



