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ON THE MINIMAL CYCLE LENGTHS OF THE COLLATZ SEQUENCES

Matti K. Sinisalo

1§. Introduction

Let x be an integer. Let the function C(x) be equal to 3x+/ if x is odd and equal to x/2 if x is
even. Iterating this function from the initial value / we get a trivial cycle {/,4,2}. The 3x+1
conjecture asserts that starting from any positive integer a; the repeated iteration of C(x)
eventually produces the integer /, after which the iterates will alternate between the integers of
the trivial cycle. This assertion posed by L. Collatz in 1937 has turned out to be very hard to
prove. It has been widely studied in different places all over the world. Besides the Collatz
problem, it has been called by many other names, like 3x+/ mapping, Hasse's algorithm,
Kakutani's problem, Syracuse algorithm or problem, Thwaites conjecture, and Ulam's problem.
In spite of massive try and effort, the Collatz conjecture is still unproven.

Number a; is said to converge if C'(a;) = I for some positive integer 4. In order to prove that
all positive initial values a; up to some number R converge, it is sufficient to check that for all
2 < a; <R there exist some integer 4 such that C"(a;) < a,. If Collatz conjecture is not true for
some integer a; we have two possibilities: Either 1) the sequence starting from a; turns to
infinity or 2) the sequence enters to cycle other than the trivial one {7, 2, 4}.

Until now all numbers up to 204 * 2% (~2.29 * 10" ) have been checked for convergence. All
numbers up to this bound have been verified to converge [7]. In this paper we are going to
study possible nontrivial cycles in Collatz sequences. If there exists a nontrivial cycle we know
that every integer belonging to this cycle must be larger than the bound referred to above.

Lagarias showed in 1985 that there are no nontrivial cycles with length less than 275,000.

It should be noted that Lagarias used (3x+1)/2 operation instead of 3x+/ operation. This gives
shorter cycle lengths. We will return to this later.

Our aim in this paper is to show that there are no nontrivial cycles with length less than
1,000,000,000. We also show that only certain discrete values are possible for the cycle lengths
of the Collatz sequence.



2§. Basic inequalities

LEMMA 1: Let us suppose that there exists an untrivial cycle of length m in some Collatz
sequence with positive initial value. Let k be the number of 3x+1 operations and n the number
of x/2 operations in the cycle. Hence k+n=m. Suppose that the smallest number in the
sequence is greater than some (with a computer reachable bound) number R. Then

In(3)/In(2) < n/k <In(3+1/R)/In(2).
PROOF: Let ¢, ¢,,...,cn be the rational integer numbers of the cycle i.e. c¢;+; = C(c;) for all
i=1,2,...m-1 and ¢; = C(c,). Without restricting the generality we can assume c¢; to be the

smallest one of them.

Let 7, 7,,... 7 be the ratios of succeeding integers in sequence when 3x+/ operation has been
used. Now r7o..r = 2",

On the other hand 3 <7 < (3c¢,+1)/c; = 3+1/c, for all i=1,...,k.

Hence 3% < 2" = ryro..r < (3+1/c))* , and therefore k In(3) <n In(2) <k In(3+1/c,).

Consequently
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In(3) InG+ 1)
<< R .0
n@ "% 5o

Our problem now is to find the rational number »n/k such that these inequalities are satisfied and
n+k is as small as possible.

We will show that this follows if the denominator £ is the least possible. For this we need some
results concerning rational approximations.
3§. Results concerning Farey sequences and rational approximations

By the Farey sequence F, of order m we mean the positive fractional numbers, whose
denominators do not exceed m, arranged in ascending order of magnitude.



Let us take some notations and terms in use. If x is a real number, then [x] is the largest
integer that is less than or equal to x. Subsequently we define residual function Mod:ZxZ" — Z
by setting m =L m/n] n+Mod(mn) forallme Z ne Z.

If m and n are rational integers, n > ( and gcd(m,n) = I, then using (extended) Euclidean
algorithm we can find such rational integers a and b, that am+bn = 1. Then am = I (mod n).
Congruence equation mx = [ (mod n) can hence be effectively solved. This solution is called
the modular inverse of the number m modulo 7.

A rational number is in reduced form if the greatest common divisor of the numerator and the
denominator is /.

When processing with Farey sequences the following lemma is essential, see [4].

LEMMA 2: Let p, g and m be positive integers, ¢ < m and gcd(p,q) = 1. Let r be a modular
inverse of p modulo q and

m+r
q

prq'+1
g

q' =l | g—r=m-Mod(m+r,q) and p'=

Then 0 < q' <m, gcd(p'.q')=1 and the number p'/q' is the smallest rational number greater
than p/q and with the denominator < m.

PROOF: 1) Clearly ¢’ is a rational integer. Consequently pg'+1 = pl (m+r)/q ] qg-pr+1 =0
(mod ¢g). Hence p'is also a rational integer.

2) Because of p'g - pq' = 1 we have ged(p',q') = 1. Hence number p'q’ is in reduced form.

3) Multiplying the inequalities

by the number g and adding number » we get » <m+r-q' < g-1+r, and consequently m+17-q <
q'<m.

4) We show that between the rational numbers p/g and p'/q' there cannot exist any rational
number having denominator < m. Let us suppose that p/g <s/t <p'/q’, 0 <t<m. Then sq -
pt > 1, p't-sq' > I and consequently
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This is a contradiction. Hence p/g and p'q' are successive rational numbers in Farey
sequence F,. [

The essential parts of the proof can be found in the book of Hardy and Wright 1938 [3]. The
preceding computationally useful form is not given, anyway.

The following lemma can be proved analogously to Lemma 2.

LEMMA 3: Let p,q,m be positive rational integers, ¢ <m and gcd(p,q)=1. Let r be a modular
inverse of p modulo q and

"_1
] q+r = m-Mod(m-r,q) and p" = %

m-—r

qn:|_

Then 0 < q" < m, gcd(q",p")=1 and the number p'/q" is the greatest rational number smaller
than p/q and with the denominator < m.

The preceeding lemmas give explicit expressions to the immediately following and to the
immediately preceding numbers of a given number in some Farey sequence. The method is
based on the modular arithmetics and the Euclidean algorithm. This method works (by
Mathematica experiments) quite well even with the numbers with /000-10000 decimal digits.

The Farey sequences have applications in a very wide area of mathematics. However, our
computationally important explicit results have not been presented, as far as we know, in the
litterature of the elementary number theory, computational number theory or the theory of
mathematical algorithms.

We can now write short Mathematica programs for using lemmas 2 and 3 effectively.

NextFarey[s , m ] :=
First[{p = Numerator[s];
g = Denominator([s];
r = First[Part[ExtendedGCD[p, gl, 2]1;
g2 = Quotient[m + r, gl*g - r;
p2 = (p*g2 + 1)/q;
p2/92}]

PreviousFarey[s , m ] :=
First[{p = Numerator([s];
g = Denominator([s];
r First[Part [ExtendedGCD[p, gql, 211];
g2 = Quotient[m - r, gl*g + r;
p2 = (p*q2 - 1)/q;
p2/92}]

NextBestUpper[s ] :=
NextFarey[s, Denominator([s]]



NextBestLower[s ] :=

PreviousFarey[s, Denominator([s]]
In the proof of Lemma 2 we have also proved the following Lemma.

LEMMA 4: (Farey-Cauchy theorem) If p/q and p'/q', where 0 < q, 0 < q' and gcd(p,q) =
gcd(p',q') = 1, are any successive rational numbers in Farey sequence F,, , then p'q - pq' = 1.

Using Farey-Cauchy theorem we can prove the following simple lemma.

LEMMA 5: Let 0 < L,BJ <a < nk <p and let k be the least possible positive denominator
value for which these inequalities are satisfied. Then

a) k> 1, n/k is unique and

b) if ¢/d, where d > 1 is any other rational number for which o < c/d < then n+k <c+d.

PROOF: a) It’s clear that k£ > /. Trivially & has a unique value. If n is not unique, then
either 1) a <j/k <n/k <p or 2) a <n/k <j/k <p for some positive integer j for which
gcd(jk) = 1.

In case 1) j/k and n/k are successive rational numbers in order k Farey sequence. By the
Farey-Cauchy theorem [ = kn - kj = k(n-j) > k. This is a contradiction.

In case 2) n/k and j/k are successive rational numbers in order k£ Farey sequence. By the
Farey-Cauchy theorem [/ = jk—nk = (j-n)k > k. This is a contradiction.

b) By a) we have o > (n-1)/k (n is unique) and by the definition of &, d >k .
Hence

— —1 1
"l = k> (-Dd = ck>(n-D)d + 1= 02%

c
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= c+d>n+k.l



4§. Back to the Collatz problem

We are now ready to prove our main results concerning the cycle lengths of the Collatz
sequences.

THEOREM 1: Let the Collatz conjecture be verified up to some bound R > 1. Let n/k be the
rational number with least possible denominator k such that In(3)/In2) < n/k <
In(3+1/R)/In(2). Then the least possible cycle length for nontrivial cycle is n+k.

PROOF: Let ¢ be the number of x/2 operations and d the number of 3x+/ operations in the
shortest nontrivial cycle. By lemma 1 we have In(3)/In(2) < ¢/d < In(3+1/R)/In(2). Let us
denote a = In(3)/In(2) and S =In(3+1/R)/In(2). Now

1 1
_ In®3) In3+—) | _ InG+—>) _ In(4) _
1—Lln(2)JsLT2;2J—L/>’J < e @ 77

Necessarily Lﬂ] =1].
Now 0<1=|8] < In3)/In(2)=0a < nk <p.

By lemma 5 integers n and k are unique and k > /. Furthermore we have c+d >n+k. But
¢ +d equals to the length of the cycle. [I

THEOREM 2: The length of any nontrivial cycle in Collatz sequence is at least
1,027,712,276.

PROOF: The 20. convergent of In(3)/In(2) is the first one of them that satisfies our
inequalities when R = 204*2%, 1t's value is 630,138,897/397,573,379. The closest neighbours
of it in order 397,573,379 Farey sequence are 357,638,239/225,644,606 and
272,500,658/171,928,773. They don't belong to our interval. So our convergent has the least
possible denominator in our interval and the sum of its numerator and denominator is the least
possible length of a nontrivial cycle in Collatz sequence. Now we get m =n + k = 630,138,897
+ 397,573,379 = 1,027,712,276. []

NOTE 1. Some researchers use (3x+1)/2 operation instead of 3x+/ operation that we have
used in the definition of the Collatz sequence. In this case the numbers 3x+/ and following
(3x+1)/2 are not considered as different iterates of the cycle. This gives shorter cycle lengths.
It is easy to see that instead of the sum of the numerator and the denominator the cycle length
is given by just numerator of our rational approximation. When the operations x/2 and
(3x+1)/2 are used the minimal cycle length is hence still at least 630,138,897.

NOTE 2. Tomas Oliveira e Silva has checked the Collatz sequences to converge with all initial
values up to 3*2% (= 2.702*10%% ) [8]. As far as we know, his result is the best one published



in international refereed mathematical journals. It is easy to see, that this result gives exactly
the same minimal cycle length as we have reached before.

The following table gives best rational upper approximations for In(3)/In2). If an
approximation is a continued fraction convergent its order number is given in the second
column. The third column gives the sum of the numerator and the denominator of the rational
approximation. This is the length of representing cycle of Collatz sequence. The last column
gives the bound to be reached by computer calculations or by theoretical studies to eliminate
the possibility of cycle of this size to exist.

Rational approximation Convergent Cycle length Coml[));::llgonal
n/k number m=n-+k R = 1/2"-3)
\ 683,381,996,816,440/ 431,166,034,846,567 | 30. | 1,114,548,031,663,007 | 1.07756x 10°
\ 600,251,839,738,223 /378,716,745,326,851 | - || 978,968,585,065,074 || 4.54238x 10
\ 517,121,682,660,006 / 326,267,455,807,135 | - | 843,389,138467,141 | 2.57441x 10 |
\ 433,991,525,581,789/273,818,166,287,419 | - | 707,809,691,869,208 | 1.60979x 10°° |
\ 350,861,368,503,572/221,368,876,767,703 | - || 572,230245271,275 || 1.03707x 10
\ 267,731,211,425,355 / 168,919,587,247,987 | - | 436650,798673,342 | 6.57741x 107 |
\ 184,601,054,347,138 / 116,470,297,728,271 | - || 301,071,352,075409 || 3.88004x 107
\ 101,470,897,268,921 / 64,021,008,208,555 | - | 165491,905477,476 | 1.86358x 107
\ 18,340,740,190,704 / 11,571,718,688,839 | 28. || 29,912,458879,543 || 2.99088x 10°°
\ 8,573,543,875,303 / 5,409,303,924,479 | 26. | 13,982,847,799,782 | 2.73493x 10 |
\ 7,379,891,435,205 / 4,656,193,084,598 | - | 12,036,084,519.803 | 8.39455x 107 |
\ 6,186,238,995,107/ 3,903,082,244,717 | - || 10,089,321,239,824 || 4.28181x 10
\ 4,992,586,555,009/ 3,149,971,404,836 | - | 8142,557,959.845 | 2.48336x 107
\ 3,798,934,114,911 / 2,396,860,564,955 | - || 6195794679866 | 1.47471x 107
\ 2,605,281,674,813 / 1,643,749,725,074 | - | 4249031,399.887 | 8.29256x 10° |
\ 1,411,629,234,715 / 890,638,885,193 | - | 2,302,268,119908 | 3.80765x 107 |
\ 217,976,794,617 / 137,528,045,312 | 24. || 355,504,839,929 | 510126x 107
\ 114,208,327,604 / 72,057,431,991 | - | 186265759595 | 4.35849x 107 |
\ 10,439,860,591 / 6,586,818,670 | 22. | 17,026,679,261 | 216891x 10"
\ 630,138,897 /397,573,379 | 20. | 1,027,712,276 | 1.25208x 10
\ 272,500,658 /171,928,773 | 18. | 444,429,431 || 3.20306x 10"
\ 187,363,077/ 118,212,940 | - | 305,576,017 | 748875x10°
\ 102,225,496/ 64,497,107 | - | 166,722,603 | 246143x10°
\ 17,087,915/ 10,781,274 | 16. | 27,869,189 || 2.94402x10%
\ 301,994/ 190,537 | 14. | 492,531 | 9.84573x 10"
\ 125,743/ 79,335 | 12. | 205,078 | 721611x10°
\ 75,235/ 47,468 | - | 122,703 | 144769 10°
\ 24,727/15,601 | 10. | 40,328 | 2.85818x10°
\ 23,673/ 14,936 | - | 38,609 | 8.04976x107
\ 22,619/14,271 | - | 36,890 | 450889x107
\ 21,565/ 13,606 | - | 35,171 | 3.04065x107
\ 20,511/12,941 | - | 33,452 | 2.23726x 107
\ 19,457/12,276 | - | 31,733 | 1.73049x 107




\ 18,403/ 11,611 | - | 30,014 | 138168x107
\ 17,349/ 10,946 | - | 28,295 | 112692x100
\ 16,295 /10,281 | - | 26,576 | 932702x10°
\ 15,241/9,616 | - | 24,857 | 779732x10°
\ 14,187/8,951 | - | 23,138 | 656133x10°
\ 13,133/8,286 | - | 21,419 | 554185x10°
\ 12,079/ 7,621 | - | 19,700 | 468659x10°
\ 11,025/6,956 | - | 17,981 | 395881x10°
\ 9,971/6,291 | - | 16,262 | 333200x10°
\ 8,917/5,626 | - | 14,543 | 278651x10°
\ 7,863/4,961 | - | 12,824 | 230747x10°
\ 6,809/4,296 | - | 11,105 | 1.88344x10°
\ 5,755/3,631 | - | 9,386 | 150545x10°
\ 4,701/2,966 | - | 7,667 | 116640x10°
\ 3,647/2,301 | - | 5,948 | 860,564 \
\ 2,593/1,636 | - | 4,229 | 583,288 \
\ 1,539/ 971 | - | 2,510 | 330,750 \
\ 4857306 | 8. | 791 | 99,781 \
\ 401/ 253 | - | 654 | 27,114 \
\ 3177200 | - | 517 | 12,825 \
\ 233/147 | - | 380 | 6,725 \
\ 149/ 94 | - | 243 | 3,343 \
\ 65/41 | 6. | 106 | 1,193 \
\ 46/29 | - | 75 | 387 \
\ 27/17 | - | 44 | 147 \
\ 8/5 | 4. | 13 | 32 \
| 5/3 L - l 8 l 6 |
| 2 L2 3 | 1 |

Table 1: The best rational upper approximations to In(3)/In(2), the corresponding cycle
length in 3x+1 problem and the bound for systematic computer verifications to eliminate
this cycle length from the table.

We can see from the table that in order to eliminate the possible existence of a cycle of length
1,027,712,276 we should verify that all integers up to 1.25208 x 10" converge. The next
possible value for cycle length would then be 77,026,679,261.

The table has been constructed in following way. First of all we computed first 30 terms in the
continued fraction expansion for In(3)/In(2). The result is

[1;1,1,2,2,3, 1,5 223, 2,23,22,1,1,551,43,1,1,15,1,9,2,5 7,1, 1,4,8].

From this expansion we get the 30. convergent for In(3)/In(2), which is
683,381,996,816,440/431,166,034,846,567. Starting from this we get the next best upper
approximations one by one using our Mathematica program NextBestUpper. All
convergents having even order number between 10 and 30 appear in our table. That's natural
because from the theory of continued fraction expansions it is generally known that the



convergents are best rational approximations for the studied real number. Anyway, as we see
from our table, they are not the only best approximations to a real number. For computing the
last column value we have set equality on upper bound n/k=In(3+1/R)/In(2). Solving R we get
R = 1/(2"-3). Because n/k is the best possible rational approximation for In(3)/In(2) we have
used at least 700 digit precision in the computations of these bounds.

We have studied the Collatz problem for positive initial values. If we want to do the same for
negative values also, we can define another integer sequence by defining b,=-a; for all positive
integer values of i. It is now easy to see, that for all i we have b;.,;=3b-1 if b;:; is odd and
bi+1=b/2 if b;.; is even. If b; is positive integer, all the iterates b; have positive integer values.

It is easy to see that our 3x-/ sequences have trivial cycles {1, 2}, {5, 14, 7, 20, 10} and {17,
50,25, 74,37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136, 68, 34, 17}.

Analogously to Lemma 1 we can prove the following result for 3x-/ problem.

LEMMA 6: Let us suppose that there exists an nontrivial cycle of length m in some 3x-1
sequence (with positive initial value). Let k be the number of 3x-1 operations and n the number
of x/2 operations in the cycle (Hence k+n=m). Suppose that the smallest number in sequence is
greater than some (with a computer reachable bound) number R. Then

In(3— ;2)
In(2)

_In®

n
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Tk In(2)°

The following table gives best rational lower approximations for In(3)/In(2). As in table 1, if
approximation is a continued fraction convergent its order number is given in the second
column. The third column gives the sum of the numerator and denominator of the rational
approximation. This is the length of representing cycle of Collatz sequence. The last column
gives the bound to be reached by computer calculations or by theoretical studies to eliminate
the possibility of cycle of this size to exist.

Rational approximation Convergent Cycle length Com;)(:ll::llgonal
n/k number m=n-+k R = 1/(3-2"%)
\ 83,130,157,078,217 / 52,449,289,519,716 | 29. || 135579446,597,933 || 120960x 10
\ 64,789,416,887,513 / 40,877,570,830,877 | - | 105666,987,718,390 | 9.50064x 10 |
\ 46,448,676,696,809 / 29,305,852,142,038 | - | 75754,528,838,847 | 3.58630x 10" |
\ 28,107,936,506,105 / 17,734,133,453,199 | - | 45842,069,959304 | 147286x 10 |
\ 9,767,196,315,401 / 6,162,414,764,360 | 27. | 15929,611,079,761 | 3.87339x10° |
\ 1,193,652,440,098 / 753,110,839,881 | 25. || 1,946763279979 || 211025x10%
\ 975,675,645,481 / 615,582,794,569 | - | 1,591,258440,050 | 2.01643x10° |
\ 757,698,850,864 /478,054,749,257 | - || 1235753600121 || 831572x10°
\ 539,722,056,247 / 340,526,703,945 | - | 880,248,760,192 | 4.03240x 10 |
\ 321,745,261,630 / 202,998,658,633 | - | 524,743,920,263 | 1.82213x107

10



\ 103,768,467,013 / 65,470,613,321 | 23. | 169,239,080,334 | 4.73167x 10" |
\ 93,328,606,422 / 5,888,379,4651 | - | 152,212,401,073 | 1.33203x 107
\ 82,888,745,831/52,296,975,981 | - 135185721812 | 7.01263x 10" |
\ 72,448,885,240 /45,710,157,311 | - | 118,159,042,551 | 4.35564x10°
\ 62,009,024,649 / 39,123,338,641 | - | 101,132,363,290 | 2.89130x 10" |
\ 51,569,164,058 /32,536,519,971 | - | 84,105,684,029 | 1.96378x 10"
\ 41,129,303,467 / 25,949,701,301 | - | 67,079,004,768 | 132361x10°
\ 30,689,442,876/ 19,362,882,631 | - | 50,052,325,507 | 855167x10"
\ 20,249,582,285 / 12,776,063,961 | - | 33,025,646,246 | 4.97527x10°
\ 9,809,721,694 / 6,189,245,291 | 21. | 15,998,966,985 | 215533x10°
\ 9,179,582,797/5,791,671,912 | - | 14,971,254,709 | 957790x 10"
\ 8,549,443,900 / 5,394,098,533 | - | 13,943,542,433 | 5.84903x 10"
\ 7,919,305,003 / 4,996,525,154 | - | 12,915,830,157 | 4.03027x10"
\ 7,289,166,106 / 4,598,951,775 | - | 11,888,117,881 | 295319x10"
\ 6,659,027,209/ 4,201,378,396 | - | 10,860,405,605 | 224096x 10"
\ 6,028,888,312 / 3,803,805,017 | - | 9,832,693,329 | 173505x 10"
\ 5,398,749,415 / 3,406,231,638 | - | 8,804,981,053 | 135714x10"
\ 4,768,610,518 / 3,008,658,259 | - | 7,777,268,777 | 106411x10"
\ 4,138,471,621/2,611,084,880 | - | 6,749,556,501 | 830251x107
\ 3,508,332,724/2,213,511,501 | - | 5,721,844,225 | 639288x107
\ 2,878,193,827/1,815,938,122 | - | 4,694,131,949 | 4.80408x 107
\ 2,248,054,930 / 1,418,364,743 | - | 3,666,419,673 | 346152x107
\ 1,617,916,033 / 1,020,791,364 | - | 2,638,707,397 | 231207x107
\ 987,777,136/ 623,217,985 | - | 1,610,995,121 | 1.31687x107
\ 357,638,239 / 225,644,606 | 19. | 583,282,845 | 446811x10°
\ 85,137,581/ 53,715,833 | 17. | 138,853,414 | 515618x10°
\ 68,049,666 /42,934,559 | - | 110,984,225 | 9.12750x 10"
\ 50,961,751 /32,153,285 | - | 83,115,036 | 3.84335x10%
\ 33,873,836/21,372,011 | - | 55,245,847 | 177685x 10"
\ 16,785,921 /10,590,737 | 15. | 27,376,658 | 674993x 107
\ 16,483,927 / 10,400,200 | - | 26,884,127 | 2.96789x 108
\ 16,181,933 /10,209,663 | - | 26,391,596 | 1.87697x 107
\ 15,879,939 /10,019,126 | - | 25,899,065 | 1.35859x10°
\ 15,577,945 /9,828,589 | - | 25,406,534 | 1.05572x 107
\ 15,275,951/ 9,638,052 | - | 24,914,003 | 857086x 107
\ 14,973,957/ 9,447,515 | - | 24,421,472 | 716787x107
\ 14,671,963 /9,256,978 | - | 23,928,941 | 612412x107
\ 14,369,969 / 9,066,441 | - | 23,436,410 | 531731x107
\ 14,067,975 / 8,875,904 | - | 22,943,879 | 4.67497x107
\ 13,765,981/ 8,685,367 | - | 22,451,348 | 415146x107
\ 13,463,987 / 8,494,830 | - | 21,958,817 | 3.71660x 107
\ 13,161,993 /8,304,293 | - | 21,466,286 | 3.34963x 107
\ 12,859,999/ 8,113,756 | - | 20,973,755 | 3.03580x 107
\ 12,558,005 /7,923,219 | - | 20,481,224 | 276435x107
\ 12,256,011/ 7,732,682 | - | 19,988,693 | 2.52724x107
\ 11,954,017 /7,542,145 | - | 19,496,162 | 231834x107
\ 11,652,023 /7,351,608 | - | 19,003,631 | 213289x107
\ 11,350,029/ 7,161,071 | - | 18,511,100 | 1.96717x107
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\ 11,048,035 /6,970,534 | - | 18,018,569 | 181817x107
\ 10746,041 /6,779,997 | - | 17,526,038 | 1.68349x 107
\ 10,444047 / 6,589,460 | - | 17,033,507 | 156116x 107
\ 10,142,053/ 6,398,923 | - | 16,540,976 | 144956x 107
\ 9,840,059/ 6,208,386 | - | 16,048,445 | 134733x107
\ 9,538,065 /6,017,849 | - | 15,555,914 | 1.25335x107
\ 9,236,071/5,827,312 | - | 15,063,383 || L16664x107
\ 8,934,077 /5,636,775 | - | 14,570,852 | 1.08641x107
\ 8,632,083/ 5,446,238 | - | 14,078,321 | 101194x10”
\ 8,330,089 /5,255,701 | - | 13,585,790 | 942637x10"
\ 8,028,095 /5,065,164 | - | 13,093,259 | 877989x 10"
\ 7,726,101 / 4,874,627 | - | 12,600,728 | 817537x10"
\ 7,424,107 / 4,684,090 | - | 12,108,197 | 7.60887x 10"
\ 7,122,113 /4,493,553 | - | 11,615,666 | 7.07689x 10"
\ 6,820,119/ 4,303,016 | - | 11,123,135 | 657638x 10"
\ 6,518,125/4,112,479 | - | 10,630,604 | 610462x 10"
\ 6,216,131/3,921,942 | - | 10,138,073 | 5.65922x10"
\ 5,914,137/3,731,405 | - | 9,645,542 | 5.23801x10"
\ 5,612,143/ 3,540,868 | - | 9,153,011 | 4.83908x 10"
\ 5,310,149/ 3,350,331 | - | 8,660,480 | 446072x 10"
\ 5,008,155 /3,159,794 | - | 8,167,949 | 410135x 10"
\ 4,706,161/ 2,969,257 | - | 7,675,418 | 3.75960x 10"
\ 4,404,167 /2,778,720 | - | 7,182,887 | 343420x 10"
\ 4,102,173 /2,588,183 | - | 6,690,356 | 312400 10"
\ 3,800,179 /2,397,646 | - | 6,197,825 | 282796x 10"
\ 3,498,185 /2,207,109 | - | 5,705,294 | 254513x 10"
\ 3,196,191/2,016,572 | - | 5,212,763 | 227466x 10"
\ 2,894,197/ 1,826,035 | - | 4,720,232 | 201573x10"
\ 2,592,203 /1,635,498 | - | 4,227,701 | 176764x 10"
\ 2,290,209 / 1,444,961 | - | 3,735,170 | 152971x10"
\ 1,988,215/ 1,254,424 | - | 3,242,639 | 130134x 10"
\ 1,686,221/ 1,063,887 | - | 2,750,108 | 1.08196x 10"
\ 1,384,227/ 873,350 | - | 2,257,577 | 871037x10"
\ 1,082,233 /682,813 | - | 1,765,046 | 668110x10°
\ 780,239 /492,276 | - | 1,272,515 | 472725x10"
\ 478,245 /301,739 | - | 779,984 | 2.84469x 10"
\ 176,251/ 111,202 | 13. | 287,453 | 1.02959x10"
\ 50,508/ 31,867 | 11. | 82,375 | 146214x10°
\ 25,781/16,266 | - | 42,047 | 212966x10°
\ 1,054/ 665 | 9. | 1,719 | 5.07780x10°
\ 569/359 | - | 928 | 112,270 \
\ 84/53 | 7. | 137 | 8,461 \
\ 19/12 | 5. | 31 | 296 \
| 11/7 L - 18 l 36 |
| 3/2 | 5 | 6 |
| I | A 2 | I |
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Table 2: The best lower rational approximations to In(3)/In(2), the corresponding cycle
length in 3x-/ problem and the bound for systematic computer verifications to eliminate this
cycle length from the table.

This table has been constructed in a way similar to table 1. First of all we take first 29 terms in
the continued fraction expansion for In(3)/In(2). The result is

[1;1,1,2,2,3, 1,5 2,23,2,23,22,1,1,551,43,1,1,15,1,9,2,5, 7,1, 1,4].

From this expansion we get the 29. convergent for In(3)/In(2), which is
83,130,157,078,217/52,449,289,519,716. Starting from this we get the next best lower
approximations one by one using our Mathematica program NextBestLower. All
convergents having odd order number less than or equal to 29 appear in our table. That's
natural because of from the theory of continued fraction expansions it is generally known that
the convergents are best rational approximations for the studied real number. Anyway, as we
see from our table, they are not the only best approximations to a real number. In order to
compute the last column value we have set equality on lower bound n/k=In(3-1/R)/In(2).
Solving R from this we get R = 1/(3-2"%). Because n/k is the best possible rational
approximation for In(3)/In(2) we have used used at least /00 digit precision in the
computations of these bounds.
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