

Aalto University School of Engineering

Risk assessment of Pursiala groundwater area in poor chemical state

Master's Thesis – Nordic Master Program in Environmental Engineering

Giacomo Ciavatti

Supervisor: Jaana Sorvari

Co-supervisor: Mette Broholm

Instructor: Sirkku Tuominen

16th of August, 2017

Contents

- Overview of the case study
- Methods
- Results
- Discussions
- Conclusions and recommendations

Overview – Workflow

The Master's Thesis is divided in 3 phases:

- 1. Literature review:
 - I. Pursiala area
 - II. Chemicals of interest
- 2. Groundwater analysis:
 - I. Aquifer vulnerability
 - II. Contaminants' dispersion in the Pursiala aquifer
- 3. Human health risk assessment

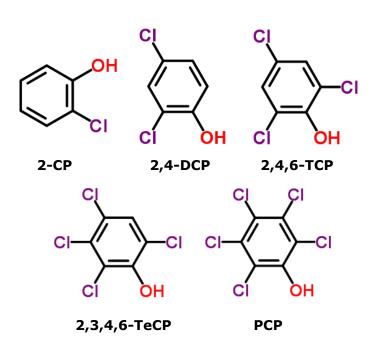

Overview – Objective of the Master's Thesis

- Provide information for the risk management of the **Pursiala groundwater area**
- Understand the reliability of the procedure for future groundwater applications
- Determine the health risks for the local people

Overview – Pursiala groundwater area

Source 1

It is classified as the **most important resource** for potable water in the city of of Mikkeli¹

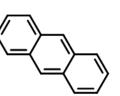

The analysis was focused in two activities:

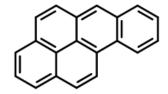
- A sawmill, which caused a contamination by
 Chlorophenols (CPs)
 - A wood impregnation plant, which brought to a release of Polycylic Aromatic Hydrocarbons (PAHs)

Overview – Chlorophenols

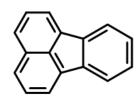
 Chlorophenols (CPs) are the result of the addition of chlorines's atoms to phenol

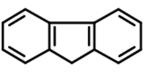
- They can be present in **drinking water** \rightarrow the disinfection of phenols through chlorination can bring to CPs as a final result²
- Between the 19 types of chlorophenols, 5 were sampled in the area affected by the sawmill
- The **exposure** to CPs can cause different damages, especially on kidneys and lungs³


Chemical	2-CP	2,4-DCP	2,4,6-TCP	2,3,4,6-TeCP	РСР
Groundwater guideline [µg/l]⁵	40	20	1	200	0.3


Source 4

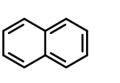
Overview – Polycyclic Aromatic Hydrocarbons (1)




Anthracene

Benzo(a)pyrene

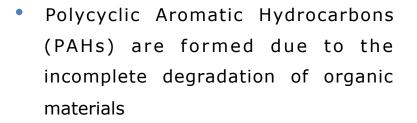
Acenaphthene



Fluoranthene

Pyrene

Naphthalene


Source 4

Chrysene

Phenanthrene

- PAH concentrations in water are **quite low** \rightarrow they have a high affinity for particulate matter and a low solubility⁶
- **9** different PAHs were detected in the source area in the aquifer
- **Cancer risk** is associated to PAHs but data on human beings are missing⁷

Overview – Polycyclic Aromatic Hydrocarbons (2)

Chemical	Acenaphthene	Anthracene	Benzo(a)pyrene
Groundwater guideline [µg/l]⁵	400	2000	0.005

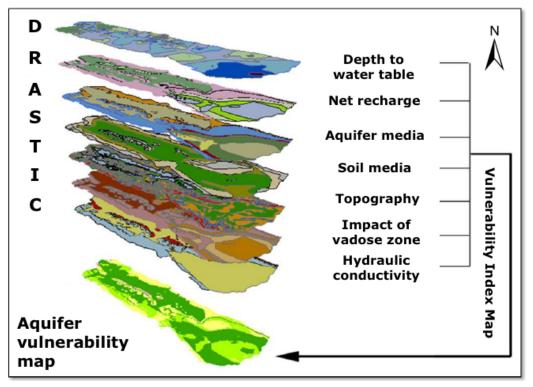
Chemical	Chrysene	Fluoranthene	Fluorene
Groundwater guideline [µg/l]⁵	5	300	300

Chemical	Naphthalene	Phenanthrene	Pyrene
Groundwater guideline [µg/l]⁵	300	100	200

Methods – Chlorophenol concentrations

The concentrations in the groundwater area around the sawmill were compiled in wells installed by the Finnish Consulting Group (FCG)

89 HP10 (tuhoutunut, o naytieet	groundwat	er		Groundwater	Concentration
88 114 kaivosta S4) (Inte	<mark>ം</mark> =	Groundwater pipe	Chemical	guideline	[µg/l]
\$115 mr 83	= Small tube			[µg/l]	L697.7
	Ø =	New pumping unit	2-CP	40	3.9E+02
91	() =	Radius of pumping 10m/20m	2,4-DCP	20	2.9E+02
B7 Sawmill area Prirala aquifer Mikkeli		The content of the drawing Observation points Scale 1:750	2,4,6-TCP	1	3.1E+03
FCG Design Suite Tracks 1010 Tracks 1010 Tracks	itu 45 B, u	Design area, work number and drawing number YMK -P22656- 06 File Drawing 6.dwg	2,3,4,6-TeCP	200	1.0E+05
www.rg.il Date 4.11.2015			РСР	0.3	2.4E+03
			Source 8		


Source 8

source d

All the concentrations exceed the groundwater guideline \rightarrow it is necessary to perform a human health risk assessment on these chemicals

Methods – DRASTIC

- It is able to estimate the aquifer vulnerability through a linear combination of **seven** hydrogeological parameters⁹
- Each paratemeters has a weight and a rating

Source 10

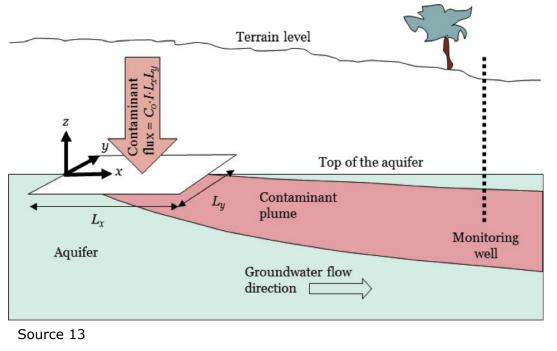
The DRASTIC index DVI is therefore generated:

$$DVI = D_r \times D_w + R_r \times R_w + A_r \times A_w + S_r \times S_w + T_r \times T_w + I_r \times I_w + C_r \times C_w$$

Methods – Sensitivity analysis in DRASTIC

- **Two sensitivity analyses** are conducted in order to understand the role the played by the parameters in the aquifer vulnerability:
 - Map removal sensitivity analysis → the DVI sensitivity, expressed with the sensitivity index SI [%] is calculated by removing one or more parameters on the DVI value¹¹:

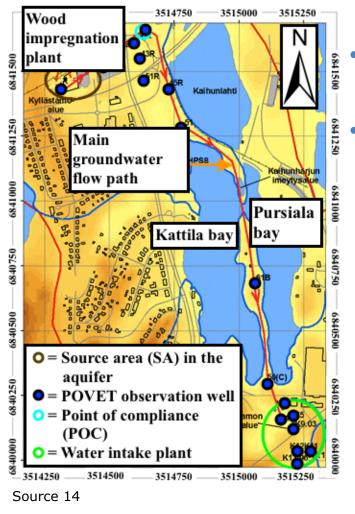
$$SI = \frac{\left|\frac{DVI}{N_p} - \frac{DVI'}{N'_p}\right|}{DVI} \times 100$$


- **DVI**' is the index obtained by **excluding** one or more parameters
- N_p and N'_p are the number of parameters used for calculating the indexes
- Single parameter sensitivity analysis → the effective weight W [%] of the parameter in the DVI index is calculated¹²:

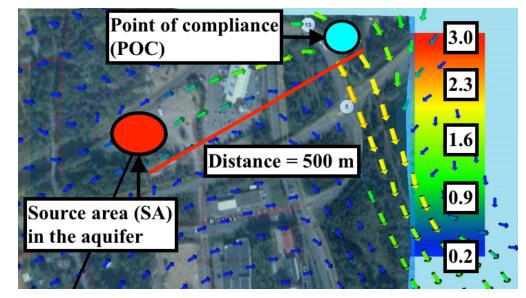
 P_r and P_w are the rating and the weight of the parameters

Methods – GrundRisk

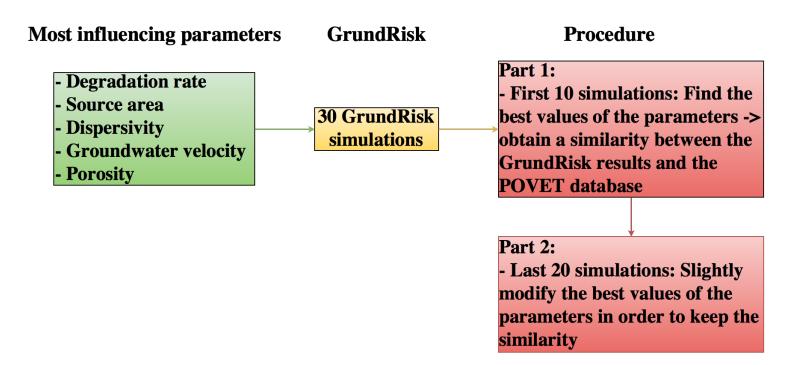
- It is based on **five assumptions**¹³:
 - The soil is homogeneous
 - Sorption processes are linear and reversible
 - Advection occurs at constant velocity
 - The first order kinetic describes the degradarion
 - The contaminant mass discharge and the contaminant source are constant


The dispersion of the contaminants in Pursiala aquifer is described by using GrundRisk model number V

Direct input from the contaminant source to the groundwater aquifer

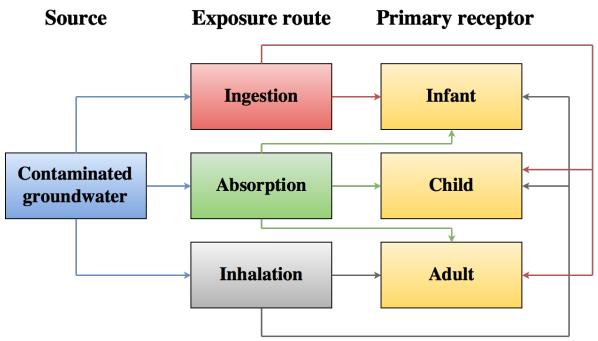


Methods – Set-up of the simulations (1)


- The GrundRisk analysis was only executed on the polycyclic aromatic hydrocarbons (PAHs)
- The simulations on the PAHs were run only in the pathway next to the wood impregnation plant

Source 14

Methods – Set-up of the simulations (2)



 Calibration of the GrundRisk parameters in order to obtain similarities between GrundRisk and the POVET database (Finnish groundwater database)

Methods – Human health risk assessment (1)

- The human health risk assessment aimed to understand the **potential risks** for the local people of Mikkeli
- Inhalation was not considered an important exposure route → the concentrations in the source area in the aquifer were not so high

Methods – Human health risk assessment (2)

• Ingestion exposure route¹⁵:

$$D_{Ingestion} = \frac{C_C \times IR \times EF}{BW}$$

• Dermal exposure route¹⁵:

$$D_{Dermal} = \frac{C_C \times P \times BSA \times ET \times CF \times EF}{BW}$$

- C_c = Chemical concentration [mg/l]
- IR = Intake rate [l/day]
- EF = Exposure factor [-]
- BW = Body weight [kg]
 - P = Dermal permeability coefficient [cm/hour]
 - BSA= Body surface area [cm²]
 - ET = Exposure time [hour/day]
 - CF = Conversion factor [1 l/1000 cm³]
- The doses obtained from these exposure routes are compares to the reference dose
 RfD (taken from the IRIS database¹⁶)
- The Hazard Quotient & Hazard Index are used to evaluate the non-carcinogenic risks¹⁷:

$$HQ = \frac{D}{RfD} \rightarrow HI = \sum HQ_{Chemical} \rightarrow HI_{Cumulative} = \sum HI_{Exposure}$$

Results – DRASTIC method (1)

• Initial situation: $DVI = D_r \times D_w + R_r \times R_w + A_r \times A_w + S_r \times S_w + T_r \times T_w + I_r \times I_w + C_r \times C_w$

Area	Maximum DVI index
Wood impregnation plant	152
Sawmill	168

• Map removal sensitivity analysis:

$$SI = \frac{\left|\frac{DVI}{N_p} - \frac{DVI'}{N'_p}\right|}{DVI} \times 100$$

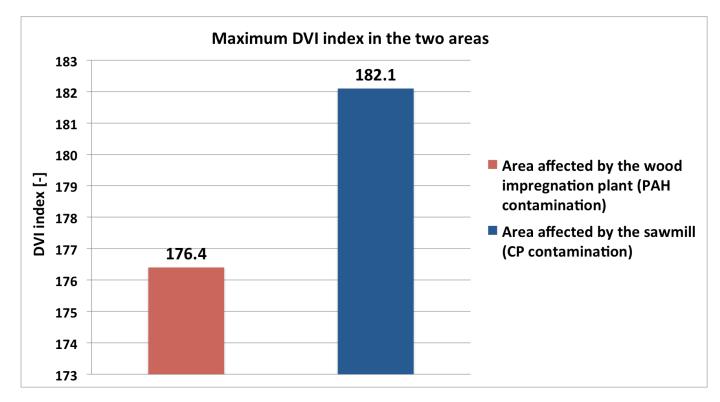
	Area around the wood impregnation plant	Area around the sawmill
Removed parameter	SI [%]	SI [%]
D	1.8	0.1
R	1.6	1.2
Α	0.9	0.6
S	0.6	0.6
т	1.3	1.4
I	2.1	1.6
С	0.7	1.5

Results – DRASTIC method (2)

• Single parameter sensitivity analysis:

$$W = \frac{P_r \times P_w}{DVI} \times 100$$

		Area around the wood impregnation plant	Area around the sawmill
Parameter	Theoretical W [%]	Effective W [%]	Effective W [%]
D	21.7	3.3	14.9
R	17.4	23.7	21.4
A	13.0	19.7	17.9
S	8.7	10.5	10.7
Т	4.3	6.6	6.0
I	21.7	26.3	23.8
С	13.0	9.9	5.4


$$ParamaterWeight_{Effective} = \frac{ParamaterWeight_{Theoretical} \times W_{Effective}}{W_{Theoretical}}$$

 The values of the DRASTIC parameters changed → new values of the DVI drastic indexes

Results – DRASTIC method (3)

- The sensitivity analysis caused an **increase** of the vulnerability
- The area affected by the **sawmill** has a higher vulnerability than the area affected by the wood impregnation plant

Results – GrundRisk simulations (1)

0

O = Source area (SA) in the aquifer

= POVET observation well

= Point of compliance (POC)

 Information on the POVET database was only available for Well 31R, 35R, 42R and 50R

Distance

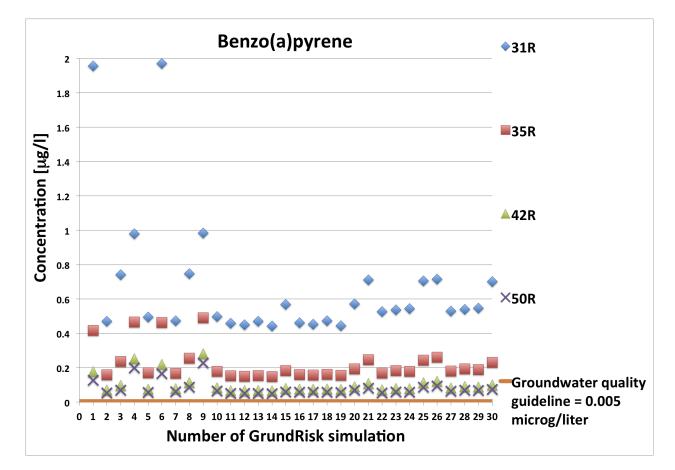
SA - 31R = 25 m

31R - 35R = 175 m

35R - 42R = 200 m

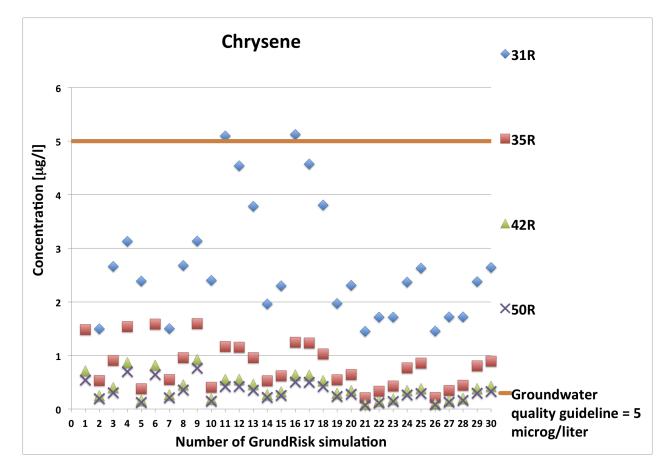
42R - 50R = 100 m

6841250


 Only the concentrations of Benzo(a)pyrene and Chrysene were above the groundwater guidelines

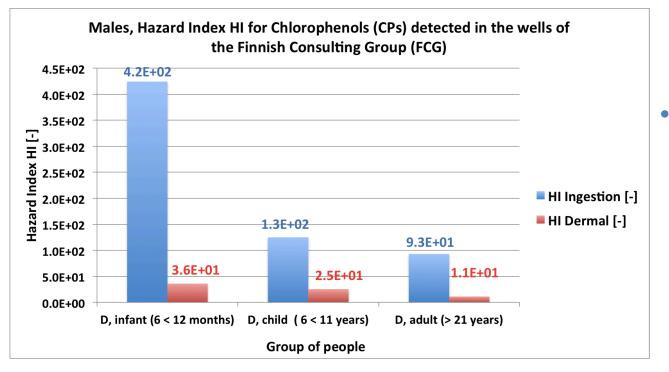
6841250

Results – GrundRisk simulations (2)



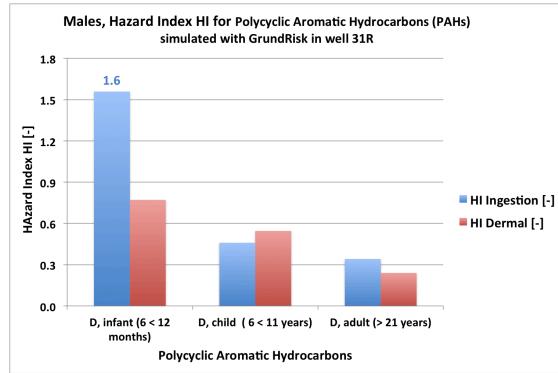
• The concentrations are **always above** the groundwater guideline

Results – GrundRisk simulations (3)



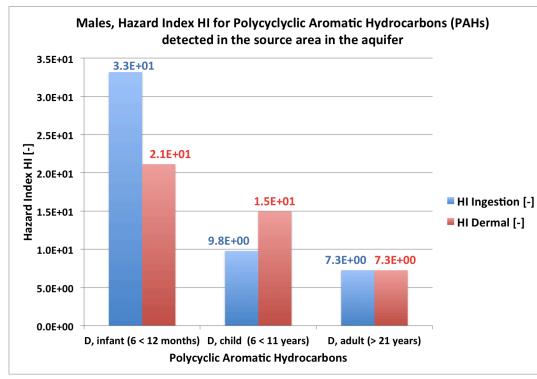
• The concentrations are above the groundwater guideline **only for well 31R**

Results – Human health risks, CPs


The hazard indexes HI are above the acceptable level of 1 for **all the groups**

Group of people	Cumulative HI [-]
D, infant (6 < 12 months)	4.6E+02
D, child (6 < 11 years)	1.5E+02
D, adult (> 21 years)	1.0E+02

Results – Human health risks, PAHs (1)


The hazard index HI is above the acceptable level of 1 for only the **group** of infants

Group of people	Cumulative HI [-]
D, infant (6 < 12 months)	2.3
D, child (6 < 11 years)	1.0
D, adult (> 21 years)	0.6

Results – Human health risks, PAHs (2)

The hazard indexes
HI are above the
acceptable level of 1
for all the groups

Group of people	Cumulative HI [-]
D, infant (6 < 12 months)	5.4E+01
D, child (6 < 11 years)	2.5E+01
D, adult (> 21 years)	1.4E+01

Aalto University School of Engineering

Discussion – Aquifer vulnerability

- The DRASTIC method had some limitations:
 - It could not be used together with **geo-referential tools**
 - No comparison was done between the field data and the DVI indexes
- No further comments are necessary for the DRASTIC method → the method is very simple to use

Discussion – Modelling tool

- In the real case, the contaminants are already in the aquifer →
 Model number V considers a direct input from the contaminant source on top of the aquifer
- The mixture of the chemicals, which could not be considered in GrundRisk, might bring to an **excess** of the groundwater guidelines
- GrundRisk is never calibrated → it was necessary in this thesis in order to study its applicability to the Finnish conditions
- Similarities were found between GrundRisk and the POVET database → the analysis with this modelling tool is satisfactory

Discussion – Human health risk assessment

- The missing calculations on the doses through the inhalation exposure did not affect the final results
- No analysis was executed on the cancer risks → slope factors were available only for a limited number of chemicals
- The human health risk assessment did not consider any joint toxic actions, which might bring to an **excess** of the acceptable levels

Conclusions

- The DRASTIC method revealed a high vulnerability of the Pursiala aquifer
- It is possible to apply GrundRisk in future groundwater applications
- The results of the human health risk assessment confirmed the emergency state of the area around Pursiala

Recommendations

- The availability of hydrogeological parameters for the whole aquifer will allow to conduct a complete analysis on Pursiala
- The calculation of the carcinogenic effects will give a more complete vision of the risks for the local people of Mikkeli
- It is highly recommended to increase the impact of the remediation technologies in the Pursiala area
- The **limitations and the simplifications** of GrundRisk must be clarified in order to produce reliable results

Thank you very much for the attention!

References (1)

- 1. Hyvonen, A. Mikkeli Pursialan pohjavesialueen tutkimukset Rakenne ja virtausmallinnus. GTK, 2013. p. 44
- 2. WHO. Chlorophenols in driking-water. Guidelines for Drinking-Water Quality -Second Edition -Volume 2 - Health Criteria and Other Supporting Information, 1998. Vol. 2. pp. 1-7
- 3. ATSDR. Public health statement: Chlorophenols (CPHs), 1999. URL https: // www.atsdr.cdc.gov/PHS/PHS.asp?id=939{&}tid=195. [Cited 28 January 2017]
- 4. ChemSpider, Search and Share Chemistry. Search ChemSpider. URL //www.chemspider.com. [Cited 3 June 2017]
- The PubChem Project. PubChem database. URL https://pubchem.ncbi.nlm.nih.gov. [Cited 28 March 2017]
- WHO. Polynuclear aromatic hydrocarbons in drinking-water. Guidelines for Drinking-Water Quality - Second Edition - Volume 2 - Health Criteria and Other Supporting Information, 1998. Vol. 2. pp. 18-19
- ATSDR. Public health statement: Polycyclic Aromatic Hydrocarbons (PAHs), 1995. URL https:// www.atsdr.cdc.gov/PHS/PHS.asp?id=120{&}tid=25. [Cited 27 March 2017]
- 8. Finnish Consulting Group (FCG), 2017. URL http://www.fcg.fi. [Cited 5 June 2017]
- Aller, L., Bennet, T., Lehr, J. H., Petty, R., Hacket, G. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological settings. US EPA, 1987. Vol. 600/2-85/0108. p. 163
- 10. Ali, S.S., Hamamin, D.F. Groundwater vulneraility map of Basara basin, Sulaimani Governorate, Iraqui Kurdistan Region. Iraqi Journal of Science, 2012. Vol. 54:3. pp. 579-594

References (2)

- 11. Lodwick, W.A., Monson, W., Svoboda, L. Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. International Journal of Geographical Information Systems, 1990. Vol. 4:4. pp. 413-428.
- Napolitano P., Fabbri A.G. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. Proceedings of the Vienna conference on HydroGIS 96: application of geographic information systems in hydrology and water resources management IAHS, 1996. 253. pp. 559-566
- 13. Locatelli, L., Rosenberg, L., Bjerg, P.L., Binning, P.J. Grundrisk coupling of vertical and horizontal transport models. Miljstyrelsen, 2016. pp. 13-32
- WaterHope. Mikkelin entinen kyllastamo: PAH-yhdisteiden kulkeutumisen ja kayttaytymisen laskenta. Mallinnuksen loppuraportti, 20.11.2013 (unpublished consulting report in Finnish). WaterHope, 2013
- 15. US EPA. Exposure factors handbook, 1997. URL https://www.epa.gov/aboutepa/aboutnational-center-environmental-assessment-ncea. [Cited 20 June 2017]
- 16. US EPA. IRIS database. URL https://cfpub.epa.gov/ncea/iris2/atoz.cfm. [Cited 2 June 2017].
- 17. Sorvari, J. Environmental risk analysis. Lecture note for WAT-E2150 Environmental Risk Analysis. Department of Built Environment. Aalto University, 2017. pp. 4-12

