Software Defined Radio, the future?

Future

There is nothing new under the sun?

What is Radio? How it was invented and developed

The 1st milestone: Mathematics and Physics

Maxwell's Equations

1.
$$\frac{\nabla x \underline{B}}{\mu} = \underline{j} + \frac{\partial}{\partial t} (a \underline{E})$$

2.
$$\nabla x \underline{E} = -\frac{\partial \underline{B}}{\partial t}$$

3.
$$\nabla B = 0$$

4.
$$\nabla \cdot \underline{E} = \frac{\ell_c}{a}$$

where
$$\underline{D} = \stackrel{\text{a}}{\underline{E}} = \text{and } \underline{B} = \mu \underline{H}$$

 \underline{B} is the magnetic induction. \underline{E} is the electric field.

 \underline{D} is the electric displacement. \underline{H} is the magnetic field.

 \underline{j} is the electric current. $\ell_{\mathcal{C}}$ is the charge density.

μ and a are constants.

 The 2nd milestone: The theory proved by experiments. Hardware development starts.

What is Radio?

• The 3rd: Making Business. Radio for everyone.

My HAM Radio History

©OH5KW

My HAM radio History

Testing ANAN 100 vs. Flex6700 & remote controlling OH5

History of Computers!

Not really today

Computing Power Summary

Name	Year	Cost	# GFLOPS	Cost/GFLOP	
Cray-1	1976	\$5M	0.08 GFLOPS	\$62m/GFLOP	
Cray-2	1985	\$17M	3.9 GFLOPS	\$4.3M/GFLOP	
Cray X1	2002	\$2.5M	205 GFLOPS	\$12K/GFLOP	
Flex-6700	2012	\$7K	121 GFLOPS	\$57.84/GFLOP	

Source: http://w8zpf.cboh.org/talks/2013-10+K8NQ+SDR+Flex.pdf

SDR radios, how good are they?

Receiver Test Data

Sorted by Third-Order Dynamic Range Narrow Spaced - or- ARRL RMDR (Reciprocal Mixing Dynamic Range) if Phase Noise Limited

Updated 9 December 2014 with Kenwood TS-590SG

Device Under Test	Noise Floor (dBm)	AGC Thrshld (uV)	dB	100kHz Blocking (dB)	Sensitivity (uV)	LO Noise (dBc/Hz)	Spacing kHz	Front End Selectivity	Filter Ultimate (dB)	Dynamic Range Wide Spaced (dB)	kHz
Added 9/29/14 FlexRadio Systems 6700 Hardware Updated	-118 -135 ^{b2}	3.0 1.0 ^{b2}	Var	A/D Limit	2.0 0.25 ^{b2}	145 155	10 50	B Band Pass	115	99	20&:
Added 10/02/12 Hilberling PT-8000A Hardware Rev 2.00	-128 -141 ^b	5.4 1.0 ^b	3	142	0.45 0.11 ^b	144 149	10 50	A Trk Presel	100	105	20
Added 08/10/12 Elecraft KX3	-123 -138 ^{b2}	12 1.3 ^{b2}	3	138	0.9 0.09 ^{b2}	144	10	B Band Pass	110	105	20
Added 12/01/10 Yaesu FTdx-5000D	-123 -135 ^b -141 ^{b1}	4.6 1.2 ^b 0.33 ^{b1}	3	127 ^s	1.1 0.27 ^b 0.13 ^{b1}	135	10	B Band Pass	90 ^f	104	20
Added 2/15/08 Elecraft K3	-130 -138 ^b	2.1 0.6 ^b	3	140 ^s	0.33 0.19 ^b	138	10	B Band Pass	105	104	20

Source: http://www.sherweng.com/table.html

WHY SDR?

- Multi-conversion a.k.a. Superhetrodyne 1928 Legacy
 - Your car radio, your TV, any older scanner you have
 - Most every Kenwood, Icom, Ten-Tec, Elecraft and Yaesu on the market today
- Direct Conversion

2000 – Modern

- FLEX-5000, FLEX-3000, FLEX1500, Elecraft KX3, Elad FDM-Duo
- Direct Sampling a.k.a wideband
 2009 Modern
 - FLEX-6000, HPSDR, ANAN-100, SUNSDR-2

Source:

https://www.dropbox.com/s/d2yturid60npgdm/How%20to%20Build%20a%20Quiet%20Station%20V2.

Radio RF/IF Architecture

© KY6LA 7/21/2014

Multi-Stage HW Receiver Chain - 1928

Legacy HW/DSP Receiver Chain - 1980

10

© KY6LA 7/21/2014

Multi-Conversion

On the IC-7600:

"When compared to a typical triple-conversion system, the double conversion system is more difficult to implement but it dramatically reduces signal distortion and provides a high-fidelity RF signal to the DSP processor."

MODERN RADIO - 2000 TECHNOLOGY - 2nd Generation SDR

"QSD" Direct Conversion Chain

SDR-1000

Direct Conversion

© KY6LA

7/21/2014

Direct Sampling

FLEX-6000

14

© KY6LA 7/21/2014

- Distortion minimized (ADC @ antenna):
 best signal clarity
- + n-Receivers, n-Panadapters and varying widths see more bands, more receivers
- + Extremely high dynamic range: operate in worst conditions IP3 +50db +125db Dynamic Range or better
- + Extreme flexibility through reprogrammability (*ultimate* SDR): future benefits
- Technically challenging to design and write software

Direct Sampling Benefits

© KY6LA 7/21/2014

7.9Gbps + **1Gbps**

16

3rd Generation SDR Architecture

FLEX-6000 Series

ANAN-200

SUNSDR-2

3rd Generation Direct Sampled SDR

17

Summa summarum

SDR radio is like ear

Voice of America Monitoring

- 1. Ahti OH2RZ and Sami OH2BFO from Attocon were SDR1000 pioneers from 1998-
- My own SDR tests with SDR1000 to find new receiver for Remote Monitoring System 2006
- New RMS system with Sami's software and SDR radio
- 70 systems online at the moment
- VOA/BBG + FlexRadio systems + Attocon Oy

RMS Web

Listen to Sounds

Bcstrs	Langs	Locs	Time Range	Dates	Freqs	Sort	
- All -	- All -	HELS	0000 to 2400	2015-01-28	- All -	by Time	

66 sound files matched your query.

Click the Graph link to view the sound data while listonic

Click the Graph link to view the sound data while listening.
1. <u>150128 0001@HELS_3965RFIFREN.MP4</u> <u>Graph</u> DRM
2. <u>150128 0031@HELS_3965RFIFREN.MP4</u> <u>Graph</u> DRM
3. 150128 0101@HELS_3965RFIFREN.MP4 Graph DRM
4. 150128 0131@HELS_3965RFIFREN.MP4 Graph DRM
5. 150128 0201@HELS_3965RFIFREN.MP4 Graph DRM
6. 150128 0203@HELS_1386RFERUMP4_ Graph
7. 150128 0231@HELS_3965RFIFREN.MP4 Graph DRM
8. <u>150128 0233@HELS_1386RFERUMP4_Graph</u>
9. <u>150128 0301@HELS_3965RFIFREN.MP4</u> <u>Graph</u> DRM
10. <u>150128 0303@HELS 1386RFERU .MP4 Graph</u>
11. <u>150128 0331@HELS 3965RFIFREN.MP4</u> <u>Graph</u> DRM
12. <u>150128 0401@HELS 3965RFIFREN.MP4</u> <u>Graph</u> DRM
13. <u>150128 0403@HELS_6105RFEBRMP4Graph</u>
14 150128 0403@HFIS 6075RFFRR MP4 Granh

Sound File Data

PC is needed

- Modern win7 PC
- With many pan adapters and receivers in use,
 PC and graphic power need will increase
- 1GB ethernet connection preferred between radio and PC
- Display area is needed. It is normal to have 2-3 big displays
- Ergonomics is important

SDR benefits

- Good, quiet reception, less fatique
- Best weak signal reception, best strong signal reception
- Panadapter, you can see the band
- Digimodes, winner in the pile up
- Diversity and adaptive noise cancelling
- Tracking notch, auto notch
- Pure signal a.k.a predistortion, cleans TX

SDR benefits

- *Native* remote will be supported soon
- Great learning opportunity
- More that one client can connect to a *radioserver* (Flex6000)

THINK DIGITAL(, sooner or later you have to)

Correction by Predistortion

24

Flex-Radio vs. HPSDR

- PowerSDR is software for many SDR radios, started by FlexRadio
- Open source project mostly

 When FlexRadio went to closed software for new 6xxx radios, many former PowerSDR contributors moved to HPSDR development (ANAN)

Multimedia, Flex6700 in action

- CQ WW CW 2015
 - -Two local CW-skimmers + cluster spots, feeding N1MM+, 160m low noise copy
 - 720 *test* QSOs made

http://youtu.be/zQaqQUDCu9U

Multimedia, Flex6700 in action

 Click on the panadapter and have one more QSO, no keyboad needed, easy contesting

http://youtu.be/-3BKA0cmZeM

SDR radio is ALREADY here

- Sami OH2BFO: Software Makes the Radio
- Ahti OH2RZ: Work in Progress
- Gerald Youngblood K5SDR: Re-discover Radio
- Timo OH5KW: Best Way to Work More DX'es and Have Fun!

Thank You