TBIcare - Evidence based Diagnostic and Treatment Planning Solution for Traumatic Brain Injuries
Traumatic Brain Injury (TBI) - Facts

• TBI is the most common cause of permanent disability in people under the age of 40 years
• In developed countries, TBI causes more loss of productive life years than cancer, cerebrovascular diseases, and HIV/AIDS combined
• The yearly costs from TBI in Europe exceed 100 billion euros
• There is a steep increase in the incidence of TBIs, with an increase of 21 % over the last five years
• Until now, TBI has been seriously underrepresented in medical R&D efforts
TBI Diagnosis and Treatment - Challenges

• Especially in subjects with multitrauma and inebriation reliable methods to detect or exclude mild (or even more severe) TBI are very poorly developed
• There is a huge inter-individual variability in injured subjects
• Temporal evolution of variable injury mechanisms and pathophysiological heterogeneity across the injured brain make it difficult to predict response to individual treatments
• Treatments are variable and based on poor or lacking evidence
• An extremely heterogeneous injury - “our most complex disease in our most complex organ”
“Our most complex disease in our most complex organ”

Individual variability
- Age
- Gender
- Cognitive reserve
- Education
- Previous TBIs
- Pre-injury health
- Genetic properties...

Injury variability
- Mechanism
- Haematomas
- Contusions
- Axonal injury
- Oedema
- Concomitant injuries
- Intracranial pressure
- Neuroinflammation
- Apoptosis
- Exitotoxicity...

How should I treat???

Treatment variability
- Treatment delays
- Surgical measures
- Cerebral blood flow maintenance
- Seizure detection and treatment
- ICP treatment
- Rehabilitation...

Outcome

This project is partially funded by the European Commission under the 7th Framework Programme (FP7-270259-TBICare)
Complexity in practice…

- Gross pathology may include **axonal injury**, **oedema**, **contusions**, **epidural haematoma**, **subdural haematoma** and **tSAH** alone or in various combinations

 \[2^6 = 64\] different types of injuries – simply by gross pathology

- If the order of temporal evolution is considered, the number of combinations is \(6! = 720\)

- Currently we know about 100 variables which are known or suspected to affect the outcome. Many of them are not dichotomous, but simply with alternatives yes/no we have \(2^{100}\) combinations

\[= 1267650600228229401496703205376\]

- **How can we ever reach evidence-based medicine in treating individual subjects with TBI?**

Never, but we can approach it…
TBIcare as a solution

The idea:
• To combine modern statistical methods and system simulation modeling, and
• Data mining methodology, and
• Modern automatic tools to quantify heterogenous physiological data, and
• Large databases with clinical TBI data (including outcome)

➔ To produce a software tool which is able to:
1. Give an accurate estimate about the nature of the injury (= improved diagnostics)
2. Assist in selecting the most appropriate treatment for this particular patients (= improved care)
TBIcare – Objectives

• TBIcare provides an objective and evidence-based solution for the management of traumatic brain injury (TBI) by improving diagnostics and treatment decisions for an individual patient.

• In reaching its goals, the project will provide:
 – improved differential diagnostics,
 – tools to select the best individual treatment and
 – improved prediction of outcome

 by relying on the extraction and combination of a versatile set of physiological observations from a patient using state-of-the-art data mining techniques.

• Using simulation modelling, TBIcare will transfer the scientific Virtual Physiological Human (VPH) concepts to daily clinical practice.
This project is partially funded by the European Commission under the 7th Framework Programme (FP7-270259-TBlcare)

Project implementation

- **Imaging data**
- **Electrophysiological data**
- **Molecular data**
- **Clinical tests**
- **Data quantification**
- **Vital signs**
- **Demographic data**
- **Statistical models for diagnostics**
- **Simulation models for treatment**
- **Software implementation**
- **Optimised diagnostics**
- **Optimised treatment planning**

Partners:
- VTT (FIN), GE Healthcare Ltd. (UK),
- Turku University Central Hospital (FIN),
- University of Cambridge (UK), Imperial College London (UK),
- Complexio (FRA), Kaunas University of Technology (LT),
- GE Healthcare Finland Oy (FIN)

Feb 2011 – Jan 2014
Budget 4.2 M€, EC contribution 3.2 M€

more info: www.tbicare.eu or Mark.vanGils@vtt.fi
Data used for modelling and validation

The following datasets will be used for modelling of TBI-related clinical data:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPACT-database (www.tbi-impact.org) (global)</td>
<td>11 235</td>
<td>Mostly severe</td>
</tr>
<tr>
<td>University of Cambridge, prospective (UK)</td>
<td>400</td>
<td>Mostly severe</td>
</tr>
<tr>
<td>Turku University Hospital, retrospective (Finland)</td>
<td>> 1000</td>
<td>All severities</td>
</tr>
<tr>
<td>TBIcare prospective* (UK + Finland)</td>
<td>400</td>
<td>All severities</td>
</tr>
<tr>
<td>Tampere University Hospital (Finland)</td>
<td>76</td>
<td>Mild</td>
</tr>
<tr>
<td>TRACK-TBI (USA)</td>
<td>650</td>
<td>Any severity</td>
</tr>
</tbody>
</table>

* From University of Cambridge and Turku University Hospital, incl. detailed clinical data + blood biomarkers + acute and late MRI + multifactorial outcome
Data to be used, different modalities

EIS = electric impedance spectroscopy, ICP = intracranial pressure, Met = metabolomics data, Gene = Genetics data, Clin = Clinical data (injury mechanisms), NTest = Neurological test data.

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Type</th>
<th>TBI/CTRL</th>
<th>MRI</th>
<th>CT</th>
<th>PET</th>
<th>EEG</th>
<th>EIS</th>
<th>ICP</th>
<th>Met</th>
<th>Gene</th>
<th>Clin</th>
<th>NTest</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUCH</td>
<td>Retr</td>
<td>1500/500</td>
<td>800</td>
<td>1500</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1500</td>
<td>1200</td>
</tr>
<tr>
<td>UCA</td>
<td>Retr</td>
<td>400/100</td>
<td>150</td>
<td>400</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>TUCH</td>
<td>Pros</td>
<td>200/50</td>
<td>200</td>
<td>200</td>
<td>25</td>
<td>50</td>
<td>70</td>
<td>60</td>
<td>150</td>
<td>150</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>UCA</td>
<td>Pros</td>
<td>200/50</td>
<td>150</td>
<td>200</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>IMPACT</td>
<td>Retr</td>
<td>40000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>40000</td>
<td>40000</td>
</tr>
</tbody>
</table>
Validation and user trials

• Diagnostic tool will be validated using multiple retrospective and prospective datasets, and the process of diagnostic work-up is divided into clinically logical components

• Treatment planning tool will be validated prospectively evaluating the treatment algorithms for different clinical decision-making situations against clinical expertise

• User trials focus on the clinical usability as a diagnostic and decision-making aid in everyday clinical practice
Data Quantification Methods

Global metabolomics and lipidomics & Gene expression analysis: Search new metabolomics, lipidomics and genetics biomarkers related to TBIs

EEG measurements and analysis: obtain relevant EEG features as input for care decision making; methods for detection of epileptic seizures and other adverse events

EIS measurements and analysis: investigate the potential of a novel technology based on electric impedance spectroscopy (EIS) to rapidly reveal structural changes in TBI

Prospective assessment of innovative non-invasive absolute ICP value meter: hardware and software solutions for fast, accurate and reliable non-invasive absolute ICP measurements for early diagnosing of TBI
TBICare: Image Quantification

Structural Networks

Functional Networks

This project is partially funded by the European Commission under the 7th Framework Programme (FP7-270259-TBICare)
Model and software development

Modeling and software development has two main objectives:
• develop a statistical model that predicts the outcome from heterogeneous patient measurements and biomarkers and
• implement the model in a software tool meeting clinical requirements in the care of traumatic brain injuries and
• develop a socio-economic simulation model for understanding interconnections of different aspects in traumatic brain injuries.
Usability

The software tool is specified iteratively via co-development using platform for collaborative interaction between clinicians and information technologists.

TBIcare Tool prototype 1: proposed features for background information, intelligent data entry, and prognostic outputs.
Dissemination - Interactions

• **Dissemination within EU Commission R&TD activities:**
 – Cooperation with Commission – dissemination via EU supported R&D initiatives,
 – Possibilities for co-operating with other EU-funded projects will be followed up.
 – Dissemination activities reported to the Commission as specified in Article II.30.

• **International networking through the collaboration**
 – International structures such as for example centres of excellence in the area of TBI research (the FinBIRD initiative, UK NCCnet and NICE TBI GDG, CENTER-TBI, INCF, IMPACT, TRACK-TBI)
 – EU image and signal processing research resources.

• **Connections with European clinical and medical institutions**

• **Research connections outside Europe**
 – National (USA) and International Neurotrauma Societies, NIH/NINDS CDE

• **Workshops, focus group discussions**

• **Collaboration with third parties (with appropriate NDAs)**

• **General public:** www.tbicare.eu, twitter.com/tbiccare, e-Newsletter (TBD), youtube (TBD)
Impact of TBICare

- **For healthcare professionals** - optimizes the treatment process, and increases medical knowledge, aids in everyday diagnostics and treatment planning
- **For the patients and their nearest** - minimizes the burden of the injury, it increases quality adjusted life years;
- **For society** - brings reduction in healthcare costs, minimizes losses of productive life years, and
- **For the European industry** - it gives an impetus to increased global competitiveness by providing immediately exploitable innovative methods.

- TBICare is expected to create initial models for common injury types
- Wider clinical usability and reliability requires continuous input of validated clinical data
- The future of TBI medicine is based on an organized system of observational medicine
The TBIcare consortium

<table>
<thead>
<tr>
<th>Participant organisation name</th>
<th>Part. short name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTT Technical Research Centre of Finland</td>
<td>VTT</td>
<td>Finland</td>
</tr>
<tr>
<td>GE Healthcare Limited</td>
<td>GEHC</td>
<td>UK</td>
</tr>
<tr>
<td>Turku University Central Hospital</td>
<td>TUCH</td>
<td>Finland</td>
</tr>
<tr>
<td>The Chancellor, Masters and Scholars of the University of Cambridge</td>
<td>UCA</td>
<td>UK</td>
</tr>
<tr>
<td>Imperial College of Science, Technology and Medicine</td>
<td>ICL</td>
<td>UK</td>
</tr>
<tr>
<td>Complexio</td>
<td>COM</td>
<td>France</td>
</tr>
<tr>
<td>Kaunas University of Technology</td>
<td>KTU</td>
<td>Lithuania</td>
</tr>
<tr>
<td>GE Healthcare Finland Ltd.</td>
<td>GEHC.FI</td>
<td>Finland</td>
</tr>
</tbody>
</table>