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Summary  

Since humans evolved, they have influenced and changed their environment, which started with 

hunting pressure and has culminated in climate change. Urbanized areas are arguably the most 

altered environments on earth, with the process of urbanization transforming natural landscapes 

in into human-dominated areas. Previous research has found urbanized areas are associated with 

higher biodiversity, provide refugee habitats for species from various taxa and support high 

population densities. However, high urbanization can also lead to declining population numbers, 

local extinction, higher invasion rates of species and potential yet undescribed consequences. 

Especially the consequences of elevated stressors, which are not exclusive to cities, but are more 

pronounced than in natural habitats, still need to be elucidated. Therefore model species for the 

urban living wildlife have to be identified. 

The Western European hedgehog (Erinaceus europaeus, hereafter hedgehog ) could serve as such a 

model species as it is geographically widespread. These days, hedgehogs are found in higher 

density close to urbanised areas while its numbers are declining in some areas of its range. 

Furthermore, hedgehogs might suffer from the densification of urban areas. The construction of 

infrastructure causes fragmentation and fragmentation can impede the movement of individuals. 

This fragmentation can influence gene flow between subpopulations when there is no or only 

restricted access to mates. Hedgehogs, in particular, could be affected by their restricted dispersal 

and susceptibility to barriers. Thus, the species characteristics and ecology make them an 

appropriate model species to understand the effect of humans on small ground-dwelling 

overlooked species in cities. Therefore the genetic diversity and behavioural plasticity of 

hedgehogs in a suitable study site like Berlin have to be investigated.  

In the first genetic study on hedgehogs in a city of this size (~1050 km²), we found, against our 

expectations, no genetic structure in the population. In a different analysis approach, we could 

identify ‘family-clan’ structures, which could be an early sign of inbreeding in subpopulations. 

With our study on the genetic structure of hedgehogs and the identification of new genetic 

markers, we provide the foundation for future projects to identify the effects of urbanisation on 

genetic diversity of hedgehogs and evidence-based population management in future. Together 

with the results of the ecological studies and effects of disturbance and fragmentation on the 

behaviour of selected hedgehog populations we can draw a better picture of small mammals in 

cities. For the ecological studies, we developed novel attachment methods in a species-specific 

manner. We improved methods by considering the welfare of the studied animals, the cost 
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efficiency and flexibility of the attachment system. This system enabled us to collect spatial and 

temporal high-resolution data with longer durations than ever before (GPS units). Thus it was 

possible to follow hedgehogs through an occurring festival in a semi-natural park and in a 

fragmented zoological garden, identifying population and individual coping strategies, which 

highlight the behavioural flexibility of hedgehogs. 

While we were able to show that research is necessary at both the population level and individual 

level, without continued monitoring of population genetic and individual behaviours using 

specialized techniques such as ours, we will never be able to fully understand the greater 

intricacies of such complex ecosystem as we have in urban centres. We now have the 

technologies and methods to make evidence-based management decisions and harbour species in 

cities. It is clear, that cities need to give nature space. As long as flora, fauna and funga have 

enough connections between fragmented “green” areas it might help to sustain healthy 

populations and could even provide source populations in the process of rural restoration. 

However, it is also clear that cities are not enough to harbour all wildlife alone in the long-term, 

especially if the remaining green spaces vanish and cities continue to condense. 
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Zusammenfassung 

Seit Beginn der Menschheit nimmt der Mensch Einfluss auf seine Umwelt, was mit dem 

Jagddruck anfing und sich heute durch sekundäre Einflüsse wie Klimawandel auswirkt. 

Urbanisierte Gebiete sind wohl die am stärksten veränderten Umgebungen der Erde. Der 

Prozess der Urbanisierung verwandelt Naturlandschaften auf extreme Weise in vom Menschen 

dominierte Gebiete. In früheren Studien wurde festgestellt, dass urbanisierte Gebiete mit höherer 

Biodiversität verbunden sind, Rückzugsräume für Arten aus verschiedenen Taxa bieten und hohe 

Populationsdichten unterstützen können. Eine starke Verstädterung kann jedoch in anderen 

Fällen auch zu sinkenden Populationsdichten, zu lokalem Aussterben, höheren Invasionsraten 

und noch nicht bekannten Folgen führen. Insbesondere die Folgen erhöhter Stressoren, wie zum 

Beispiel Verschmutzung, Lärm und höheren Temperaturen im Vergleich zu ländlichen 

Lebensräumen müssen noch geklärt werden. Daher müssen Modellarten für die städtische 

lebende Tierwelt identifiziert werden, die nicht nur verschiedene Taxa sondern auch 

verschiedene Charakteristika mit sich bringen. 

Der Braunbrustigel (Erinaceus europaeus, hiernach auch Igel) mit seiner weiten geographischen 

Verbreitung könnte eine solche Modellart sein. Igel werden heutzutage in höheren Dichten in 

der Nähe von urbanisierten Gebieten gefunden und nehmen in Teilen ihres Verbreitungsgebietes 

ab. Es könnte sein das der Igel unter der voranschreitenden Verdichtung der urbanen räume 

leidet, denn durch seine charakteristische Morphologie ist er durch Barrieren, die in Städten 

auftreten, unmittelbar betroffen. Diese Fragmentierung behindert die Bewegung von Individuen. 

Zusammen mit der Verhaltensbiologie der Igel könnte so die genetische Struktur der 

Igelpopulation in Städten beeinflusst werden. Mit seiner eingeschränkten Ausbreitung und 

Anfälligkeit für Barrieren könnte der Igel als Modellart für andere bodenlebende Säugetierarten 

sein, die sonst übersehen werden. 

In der ersten genetischen Studie an Igeln in einer Stadt dieser Größe (~1050 km²), fanden wir - 

entgegen unseren Erwartungen - keine genetische Struktur in der Igel Population. In einem 

anderen Analyseansatz konnten wir „Familien-Clan’ -Strukturen identifizieren, die ein frühes 

Zeichen für Inzucht in Subpopulationen sein könnten. Mit unseren Studien zur genetischen 

Struktur von Igeln und zur Identifizierung neuer genetischer Marker legen wir den Grundstein 

für zukünftige Projekte. Dadurch können die Auswirkungen der Verstädterung auf die 

genetische Vielfalt von Igeln besser verstanden werden und, wenn nötig, kann evidenzbasiertes 

Populationsmanagement initiiert werden. Diese Informationen und die Ergebnisse der 
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ökologischen Studien, in welchen wir den Einfluss eines Musikfestivals und der Fragmentierung 

der Stadtstruktur auf das Verhalten von ausgewählten Igelpopulationen untersuchten, können 

dabei helfen, ein vollständigeres Bild von Igeln in Städten zu liefern. Für die ökologischen 

Studien haben wir eine neuartige Anbringungsmethode artspezifisch entwickelt. Dabei 

verbesserten wir das Wohlbefinden der untersuchten Tiere, die Kosteneffizienz und die 

allgemeine Flexibilität bei Studien im Freiland. Dieses System ermöglichte es uns räumlich und 

zeitlich hochauflösende Daten zu sammeln und dabei den Tieren länger als zuvor mit GPS 

Geräten zu folgen. So war es möglich, Igel durch ein stattfindendes Festival und in einem 

fragmentierten zoologischen Garten zu verfolgen, wobei die Reaktion der Population im 

Allgemeinen und die individuellen Strategien identifiziert werden konnten, die die 

Verhaltensplastizität von Igeln unterstreichen. 

Während wir zeigen konnten, dass Studien sowohl auf Population als auch auf individueller 

Ebene notwendig sind, ist es ohne durchgehendes Monitoring der genetischen Diversität und 

des individuellen Verhaltens der Population nicht möglich die Feinheiten eines solch komplexen 

Ökosystems wirklich verstehen zu können. Wir leben in einem Zeitalter, in welchem wir über 

Technologien und Methoden verfügen, um Wissen zu sammeln und daraus evidenzbasierte 

Managemententscheidungen zu treffen. Dadurch wird es uns möglich sein, zu naturfreundlichen 

Städten beizutragen. Es ist klar, dass Städte der Natur Raum geben müssen. Solange Flora, Fauna 

und Funga über genügend „grüne“ Verbindungen verfügen, können Städte möglicherweise 

gesunde Populationen aufrechterhalten und sogar Quellbestände für die Wiederansiedlung 

wiederhergestellter ländlicher Gebiete liefern. Denn auch dies ist klar: auf lange Sicht reichen 

Städte nicht als Lebensraum für die Arten aus, vor allem wenn noch existierende Grünflächen 

verschwinden und sich die Städte weiter verdichten. 

.
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Introduction: A changing and urbanizing world 

We are living in a changing world. Since humans evolved they have changed their environment, 

which started with hunting pressure and has culminated in climate change. During our evolution, 

humans have congregated in settlements, from villages associated with increasing agriculture and 

trade, to rapidly expanding megacities. Urban areas are growing worldwide (Grimm et al., 2008) 

and we have already passed the point where more than 50 % of humankind live in urban areas 

(UN (United Nations), 2018). Urbanized areas are arguably the most altered environments on 

earth, with the process of urbanization transforming natural landscapes in extreme ways into 

human-dominated areas (Seto, Güneralp and Hutyra, 2012).  

Urban ecology is a relatively recent, but burgeoning field of ecology (Magle et al., 2012; 

McDonald, 2016). As urban centres provide a new and altered environment for wildlife and 

plants, it has been necessary to ask new questions and understand the ecology of species in a new 

way (Sutherland et al., 2013; McDonald et al., 2018). These environmental changes are acting and 

interacting which each other along a range of spatial and temporal scales, which can affect 

wildlife and may force adjustments and adaptation (Figure 0.1, McDonnell and Hahs 2015; 

Grimm et al. 2008). Trying to grasp the various functional and ecological differences to the 

‘natural’ non-urbanized world has led to new concepts and has resulted in the creation of terms 

like ‘urban avoiders’, ‘urban adaptors’ and ‘urban exploiters’ (Blair, 1996; McKinney, 2002; 

Fischer et al., 2015). The use of these novel terms has been debated, therefore the employment 

of long-established, widely applicable terms like ‘long-’, ‘short-distant migrants’ and ‘residents’, is 

preferable (McDonnell and Hahs, 2015). Urban ecology is not solely the study of wildlife in 

urbanized areas alone, but also includes essential factors such as the anthropogenic, social and 

human health aspects of living in an urbanized environment (Seto, Parnell and Elmqvist, 2013). 

Previous research has found urbanized areas are associated with higher biodiversity compared to 

rural areas and provide refugee habitats for species from various taxa and support high 

population densities (Ives et al., 2016; Threlfall et al., 2017; Kowarik and von der Lippe, 2018). 

However, high urbanization can also lead to declining population numbers, local extinction, 

higher invasion rates of species and potential yet undescribed consequences (von der Lippe and 

Kowarik, 2006; Duncan et al., 2011; Beninde, Veith and Hochkirch, 2015; Gaertner et al., 2017). 

Especially the consequences of elevated stressors, which are not exclusive to cities, that may be 

more pronounced than in natural habitats, still need to be elucidated (Beninde, Veith and 

Hochkirch, 2015; McDonnell and Hahs, 2015; Threlfall et al., 2016; Johnson and Munshi-South, 

2017; Kowarik and von der Lippe, 2018).  
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Figure 0.1: ‘Urban environmental conditions viewed in the context of spatial scales and timescales. The location of the 
text indicates the most prevalent scale of impact. The horizontal arrows indicate the range of temporal scales and the 
vertical arrows indicate the range of spatial scales that may be impacted. Biotic interactions include competition, 
predation, parasitism, mutualisms, facilitation, etc. Physical disturbances have been divided into two broad categories 
(asterisks): Acute disturbances are generally individual events located within relatively discrete places in time and space 
(e.g., vandalism, storms) and chronic disturbances are generally more repetitive events that occur over longer 
timescales and possibly broader spatial scales (e.g., trampling).’ From McDonnell and Hahs 2015 

These days, several projects have shown that some animals (e.g. foxes, wild boars, squirrels, 

flying foxes, racoons and house mice) are able to cope and coexist with humans in cities 

(McKinney, 2002; Santini et al., 2018). Theories like the refugee species concept, which posits 

that species live in suboptimal habitats because suitable ones are not available (Kerley, 

Kowalczyk and Cromsigt, 2012; Kuemmerle et al., 2012; Stirnemann et al., 2017), suggesting that 

the wild species in cities could struggle with a compromise solution. Therefore, we need to 

understand if these species sustain stable populations. More specifically, we have to identify the 

evolutionary processes driving the ability for animals to survive or thrive in urban habitats and 

remove or mitigate possible threats. It is essential to investigate this for a large number of species 

with various behavioural, reproductive, morphological and ecological characteristics. Only after 

obtaining an understanding of the challenges of these species living in urban environments, will 

we be able to protect the needed resources and sustain or create optimal habitats for the flora 

and fauna in our cities (Magle et al., 2012).  

Urbanization and urban expansion lead to increased infrastructure, which divides formerly 

connected landscapes into separate patches (Doncaster and Dickman, 1987; Braaker, Moretti, et 
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al., 2014). This habitat fragmentation effects animal movement, behaviour and the ability to 

retain requirements for successful reproduction and ultimately secure a sufficient gene flow 

(Magle et al., 2012; Guneralp and Seto, 2013). Animal movement is affected by barriers, 

unsuitable habitats and landscapes of fear, all of which impedes movement and dispersal 

(Wauters et al., 1994; Bleicher, 2017; Soanes et al., 2018; Tucker et al., 2018). If species are able to 

explore new habitats or patches the limited influx of animals or lack of mates can create 

bottlenecks, inbreeding and thus lower, for example, the diversity of major histocompatibility 

complex (MHC) genes and general variation of the population (Ellstrand and Elam, 1993; Noël 

et al., 2007; Belasen et al., 2019). In the new field of ‘urban conservation genetics’ the reports for 

various taxa are between stable and reduced genetic variability which could influence the 

resistance and resilience of species (Noël and Lapointe, 2010; Munshi-South and Nagy, 2014). 

Moreover, in urbanized areas the increasing density and height of buildings decrease the 

permeability for urban wildlife even further. With buildings and roads comes sealed surfaces and 

changed airflow, which can lead to changes in microclimate and eventually generate the so-called 

urban heat island effect. The local warmer temperatures in cities, especially in summer and 

winter, may create a range of stressors, causing positive or negative impacts on ourselves as 

humans and animals living in cities (Mills, 2008; Seto, Parnell and Elmqvist, 2013; Li, 2018).  

In this highly altered environments, urban green spaces can create refuge habitats for a range of 

species (Ansell, Baker and Harris, 2001; Bateman and Fleming, 2012; Haigh et al., 2017). For 

some species, public parks, cemeteries and abandoned lands are part of their foraging habitats or 

stepping-stones connecting suitable habitats in their home ranges, whereas others completely rely 

on these urban green spaces throughout their whole life cycle (Braaker, 2012; LaPoint et al., 

2015).  

Finally, the presence of humans and their associated factors like traffic, light, noise, pollution and 

management of the remaining green patches is a constantly influence the wildlife species and 

ultimately result in the creation of a novel complex ecosystem (Grimm et al., 2008; Kowarik, 

2011; Seto, Parnell and Elmqvist, 2013; McDonnell and Hahs, 2015). These potential stressors 

can not only have lasting effects on humans (Burton, 1990; Díaz et al., 2006), but also on animals 

living in urban environments (Ditchkoff, Saalfeld and Gibson, 2006; Lowry, Lill and Wong, 

2013; Wong and Candolin, 2015; Johnson and Munshi-South, 2017). The important question is 

whether animals are able to keep up with the rapid changes their habitats undergo, in order to 

conserve the sustainability and integrity of the population. While the swift extinction of species 

in this system can be observed quite easily, it is hard to identify wherever animals are constantly 
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stressed and disturbed and thus declining in numbers (Diamond, 1988; Duncan et al., 2011). 

However, it is known that stress leads to reduced reproductive success of individuals, thus could 

play a role in urban environments, while we could assume animals are able to habituate to 

environments the constantly changing environments of urban habitats or the remarkable 

difference to natural habitats could lead to chronic stress (Hofer and East, 1998). Chronic stress 

may influence metabolism and energetics of individuals, usually measured using heart rate or 

hormonal responses such as raised concentrations of epinephrine or glucocorticoids (Dhabhar et 

al., 1996; Wingfield, Jacobs and Hillgarth, 1997; Sapolsky, Romero and Munck, 2000; Wikelski 

and Cooke, 2006). Chronobiological studies are also able to detect disturbance (Scheibe and 

Gromann, 2006; Berger, 2011). Perturbations in biological rhythms are detectable. Sudden 

differences in the environment destroy the inner rhythm and are detectable if a baseline 

behaviour and activity rhythm of the individual is available (Berger, 2011). This is important 

because it seems that human modifications alter animal behaviour more than natural causes 

(Wong and Candolin, 2015). Therefore in urbanized areas, more exploratory phenotypes seem to 

be present; where animals change their activity patterns or adjust their movement and sociality 

(Bateman and Fleming, 2012; Miranda et al., 2013; Sol, Lapiedra and González-Lagos, 2013; 

Breck et al., 2019). All these influences ultimately lead to selection pressure on Darwinian fitness 

factors including reproduction, diversity and survival (Dickman and Doncaster, 1988; Hofer and 

East, 1998).  

In small and ground-dwelling mammals in urban habitats, the effect of habitat fragmentation and 

the resultant reduction in dispersal and access to mates has an important effect on genetic 

diversity (Doncaster and Dickman, 1987). With commonly shorter generation times and small 

dispersal capacity or range size, these animals are likely to be more affected, than animals that 

can move faster, fly or otherwise overcome physical barriers present in urban habitats (Dickman 

and Doncaster, 1988). It has already been shown that some species are capable of adapting to the 

urban environment (Johnson and Munshi-South, 2017) but we need a broader range of model 

species to understand the complete impact of urbanization on biodiversity and to detect the 

general pattern. More specifically, there has been an overall lack of investigation on small cryptic 

species as their populations at first glance often appear to be thriving in cities. Yet the impacts of 

urbanization on these populations remain understudied or entirely overlooked.  
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The Western European hedgehog (Erinaceus europaeus) is an elusive 

species with potential as a model species 

Western European hedgehogs (Erinaceus europaeus) (hereafter hedgehogs) are a small, nocturnal 

and thus elusive mammal. With a highly flexible body covered in spines, they roam undetected in 

many habitats. They are described as ‘edge’ specialists moving through mosaic-like habitats, 

foraging in open and densely vegetated habitats and nesting in the later (Reeve, 1994; Huijser, 

2000; Huijser and Bergers, 2000). Being hibernators and generalist feeders focusing on 

macroinvertebrates, they are affected by the ongoing decline in natural mosaic-like habitats, the 

decline in arthropods and climate change (Hof and Bright, 2010; Hallmann et al., 2017). These 

species characteristics, alongside other abiotic and biotic factors like predation avoidance, 

availability of food and habitats, seem to drive them closer to and into urban environments, 

where they are found in higher numbers and where their population decrease seems slower than 

in rural habitats (Baker and Harris, 2007; Hubert et al., 2011; Hof and Bright, 2012; The State of 

Britain’s Hedgehogs 2015, 2015; C. E. Pettett et al., 2017; B. M. Williams et al., 2018). With their 

small home ranges, short generation times and lack of a clear dispersal phase in their ontogeny 

they are an ideal model species for other small mammals in urban environments (body size < 

1500 g) (Doncaster and Dickman, 1987; Baker and Harris, 2007).  

Intensive hedgehog research is, compared to their high public popularity, relatively scarce. In 

Europe, the research focus over the last 100 years has shifted during the decades between 

countries and was mainly driven by individual researchers. In the early 30s research on 

hedgehogs started with Konrad Herter in Germany (English version Herter 1965) and was 

picked up by Burton in United Kindom (UK) (Burton, 1969), while ecological field studies on 

hedgehogs were initiated through Pat Morris in the late 60s (Morris, 1973). In the 80s, Nigel 

Reeve undertook the first successful tracking studies of hedgehogs (Reeve, 1981). At the same 

time, the body of literature on hedgehog research increased in the European mainland with 

Reichholf and Esser in Germany (Reichholf and Esser, 1981), Kristiansson in Sweden 

(Kristiansson, 1984) and Boitani in Italy (Boitani and Reggiani, 1984). First genetic studies in the 

field were conducted by Becher and Griffiths in the UK (Becher and Griffiths, 1997). Other 

studies continued this research by resolving the genetic phylogeography and possible 

hybridisation (Santucci, Emerson and Hewitt, 1998; Seddon et al., 2001; Bolfíková and Hulva, 

2012; Bolfíková et al., 2017). More recent studies resolved the origin and colonization of 

hedgehogs on islands on which they had been released (Bolfíková et al., 2013; Iannucci et al., 

2018). Here, the hedgehog classified as an invasive species on island North and South island 

(New Zealand), Pinosa (Italy) and the Uists (Scotland), shows how the generalist traits described 
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earlier and its adjustment potential can be seen as a pre-adapted trait to novel habitats (Jackson 

and Green, 2000; Jackson, 2007; Bolfíková et al., 2013). Nowadays, the European Hedgehog 

Research Group is active all over Europe and is beginning to incorporate other non-European 

hedgehog species as well, making the initiation of projects and future collaborations possible. 

Recent studies, despite the broad geographical distribution, attempt to identify the causes for the 

ongoing decline of hedgehogs. Only the UK and the Netherlands have sufficient population data 

from countrywide and local surveys to scientifically identify a decreases in occupancy and 

declining abundance in their hedgehog population (Huijser and Bergers, 2000; Hof, 2009; Roos, 

Johnston and Noble, 2012; Johnson, 2015; Johnson et al., 2015; Poel et al., 2015; Hof and Bright, 

2016; Carly E. Pettett et al., 2017; Wilson and Wembridge, 2018). Following the numbers from 

the UK describing a serious decline in the hedgehog population, other countries slowly can add 

information to the bigger picture in Europe with local projects and support a general decline of 

hedgehogs e.g. in Denmark (Krange, 2015) and Germany (Müller, 2018). 

While the ecology and needs of hedgehogs have been investigated in rural and semi-urban 

habitats, not much is known how cities, especially big cities, affect the ecology, genetics and 

behaviour of hedgehogs (Hubert et al., 2011; Johnson et al., 2015; Pettett, 2016; B. Williams et al., 

2018). More specifically, we lack information about the genetic diversity of hedgehogs in a highly 

urbanized and thus fragmented habitat. How do hedgehogs move and react in this highly 

changed and constantly changing environment? How do specific anthropogenic stressors affect 

hedgehogs? Moreover, how do individuals react to the extensive disturbance caused by transient 

events where a number of stressors add up?  

Objectives & purpose of study 

In order to address these questions, we needed to select ‘state of the art’ methods and establish a 

suitable study site. The chosen study site of Berlin is one of the biggest and yet one of the 

greenest cities in Europe, harbouring a variety of wildlife in and between its many green spaces 

(Kabisch et al., 2016). Konrad Herter originally caught some of the hedgehogs for his studies 

back in the 1930s in Berlin. In 2013 the research project ‘Igel in Berlin’ was initiated. The aim of 

this study within the project is to investigate (i) whether the hedgehog population of Berlin is 

genetically affected by landscape fragmentation through urbanization. We aim to improve the 

methods for (ii) genetical and (iii) ecological studies, by ensuring high welfare standards. By 

utilizing the novel and improved method, we tried to (iv) understand the coping strategies of 

hedgehogs in urban parks under different highly changed circumstances and under natural 
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conditions. We used the novel approach of analysing hedgehog behaviour during a music 

festival, in order to (v) understand individual differences in coping strategies of hedgehogs.  

Structure of this thesis 

This thesis consists of five chapters, each presented as a manuscript on its own. The first part 

focuses on the population genetics of hedgehogs in two ways. Firstly, in Chapter 1 we report on 

our investigation of the genetic structure of hedgehogs in and around Berlin to reveal higher 

genetic connectivity between hedgehogs across the city than expected. In Chapter 2 in 

cooperation with colleagues from Vienna, Austria (University of Natural Resources and Life 

Sciences (BOKU)) we improved current genetic methods to sequence and analyse DNA samples 

for two hedgehog species in Europe; thus enabling higher resolution in future studies. Chapter 3 

of the thesis reports our development of a new and improved method for the purpose of 

investigating individual behaviour of hedgehogs. By refining a backpack design, we made it 

possible to attach and reattach small lightweight devices like GPS, acceleration and other data 

loggers. In the final two chapters, we investigated the ecological consequences of human 

anthropogenic stressors on hedgehogs by utilizing proxies of movement, activity and nesting 

behaviour. Chapter 4 describes how we examined the effect on hedgehogs of a music festival 

and fragmentation in two resident populations of urban parks. While in the last Chapter (5) we 

report on our investigation into the individual coping strategies of hedgehogs during the 

previously mentioned music festival. 
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1.1 Abstract 

Urban environments are characterized by high structural diversity. This includes strong habitat 

fragmentation and many landscape types, which provide a rich matrix of novel, mosaic-like and 

sometimes fast changing habitat patches. Such structural diversity is likely to influence the 

genetic structure of urban wildlife, especially in species with small home range sizes and limited 

ability to surmount barriers. The presence of such barriers will cause genetic isolation of 

populations, whereas structures facilitating connectivity across different urban landscapes will 

allow gene-flow and thus support the persistence of sustainable populations. Here we use the 

European hedgehog (Erinaceus europaeus), a small mammal with limited mobility, as a model 

species to study if the structural matrix of the urban environment has an influence on genetic 

population structure in the city of Berlin (Germany). Using 10 established microsatellites, we 

genotyped 143 hedgehogs from numerous sites throughout Berlin. The inclusion of all 

individuals into the cluster analysis yielded three genetic clusters, potentially reflecting spatial 

associations of kin (larger family groups). To examine the potential bias from the cluster analysis 

potentially caused by closely related individuals, we determined all pairwise relationships and 

excluded close relatives before repeating the cluster analysis. For this data subset (N = 65) both 

clustering algorithms (Structure, Baps) applied indicated the presence of a single genetic cluster. 

These results suggest that the high proportion of green patches in the city of Berlin provides 

numerous stepping stone habitats potentially linking local subpopulations, although we cannot 

exclude translocation of individuals by hedgehog rescue facilities, which would facilitate gene 

flow as well. We therefore propose that management activities such as releases by animal rescue 

centres should become a part of the data collection of population genetic studies. 
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1.2 Introduction 

Urbanization involves some of the most rapid and intense human-induced transformation 

processes of the formerly existing landscape. Structures such as impervious surfaces, roads and 

buildings have fragmented the environment for many species. Smaller patches of the former 

landscape are now separated by semi-penetrable or impenetrable barriers. In order to gain access 

to adequate resources, animals living on such patches often have to cross these barriers to move 

from one patch to another. Some wildlife species are able to surmount barriers and can cope 

with urban conditions (urban utilizers, urban dwellers; Fischer et al. 2015) and the close 

proximity to people (e.g., wild boar Sus scrofa; Stillfried et al. 2017), whereas others cannot (e.g., 

great bustard Otis tarda; Pitra et al. 2002). Thus, for behaviourally flexible wildlife species urban 

habitats may provide a novel living environment with the opportunity to exploit novel resources 

(Johnson & Munshi-South 2017; Stillfried et al. 2017; Maclagan et al. 2018).  

Geographic separation of populations by barriers reduces gene-flow among them and thus 

increases genetic differentiation among populations. It also decreases the genetic variation within 

populations both by genetic drift and by reducing the availability of genetically different breeding 

partners, thereby increasing the risk of inbreeding and subsequent inbreeding depression as well 

as of higher infection rates and thus elevated mortality (Belasen et al. 2019). Thus, a consequence 

of habitat fragmentation may be local population extinction (Wilcox & Murphy 1985; Munshi-

South & Nagy 2014; Lourenço et al. 2017; Martins et al. 2017).  

However, urban landscapes may be intermingled with large green patches such as parks, 

residential gardens, cemeteries, but also with currently unused former industrial sites and other 

habitats that still can provide a living space for wildlife species. These patches may serve as 

stepping stone habitats, allowing gene flow between otherwise separated local populations 

(Kimura & Weiss, 1964). Whether gene flow occurs depends on the mobility and dispersal 

capacity of each species in relation to the distances between suitable habitat patches and their 

distribution within the urban matrix. Thus, we expect species with high mobility and high 

dispersal capacity to be less affected by a strongly structured urban landscape than species with 

small home ranges and limited dispersal capacity. For the latter we therefore expect a fragmented 

urban landscape to promote genetic isolation of clusters of individuals, causing a highly 

structured meta-population (Opdam 1991; Andrén 1994; Taylor et. al 2011; Braaker et al. 2017). 
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The purpose of this study is to test these expectations by genotyping European hedgehogs 

(Erinaceus europaeus) across the highly fragmented urban matrix of the city of Berlin. Although 

hedgehogs are widely distributed across Europe (Amori 2016), we used this species as a model 

species because of its limited dispersal capacity and its relatively small home range (Doncaster & 

Dickman 1987; Baker & Harris 2007). The size of the latter may range from 0.8 ha (England, 

Dowding et al. 2010 ), over 10 to 40 ha (England, Morris 1988) up to 98 ha (Finland, Rautio et 

al. 2013). While female hedgehogs mostly stay within their habitat patches, male hedgehogs 

occasionally cover distances of up to 7 km per night (Zingg 1994). Because the European 

hedgehog can use the urban matrix and cope with its structural characteristics (Doncaster & 

Dickman 1987; Braaker et al. 2014), population densities in urban areas can be higher than in 

rural habitats (Hubert et al. 2011; Hof et al. 2012). Despite their broad geographical distribution 

and their ability to utilize urban matrices, hedgehog populations have been declining in size and 

numbers across Europe (Huijser & Bergers 2000; Krange 2015; Hof & Bright 2016; Müller 

2018). Understanding the long-term consequences of progressive spatial fragmentation by 

urbanization on hedgehog genetic population structure might become increasingly important for 

developing conservation strategies for this species (Doncaster & Dickman 1987; Hof & Bright 

2009; Beninde et al. 2015).  

1.3 Materials & Methods 

Sample collection and sites: Over a period of five years (2013-2017), we collected mouth 

mucosal cells of free-ranging European hedgehogs (N = 250) using cotton swabs (FLOQSwabs, 

COPAN, Brescia, Italy and Forensic Swabs, Sarstedt, Nümbrecht, Germany) in the city of Berlin 

and its suburbs (~1050 km²). Sampling was carried out during torchlight transect walks between 

10 p.m. and 4 a.m. in different public parks, cemeteries and green areas in Berlin, whereby in 

2016 and in 2017 the main focus was on two large parks: a) the ‘Treptower Park’, a 20 ha open 

public park in south-central Berlin and b) the ~160 ha large ‘Tierpark Berlin’ (one of Berlin’s two 

zoological gardens). For each individual, we recorded the GPS coordinates of its location. 

Additional samples (N = 56) were provided by animal rescue facilities and local veterinary 

surgeries in Berlin (Figure 1.1, Supplementary Table 1.1). For these samples approximate 

locations were provided by staff members. Coordinates, which may have had an error margin of 

a few hundred meters were recorded using online maps. We also asked staff working at these 

facilities whether they had implemented particular rules on how release sites were chosen after 

the rehabilitation of hedgehogs. All procedures in this study involving animals were performed in 

accordance with the ethical standards of the institution (IZW permit 2016-02-01) and German 

federal law (permission numbers Reg0115/15 and G0104/14). 
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Figure 1.1: Map of Berlin and its surroundings and showing the locations from 139 out of 143 samples (four samples 
not shown because outside of the map) 

DNA extraction and analysis of microsatellite loci: DNA was extracted from all 306 samples 

using the DNeasy kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions, with 

a final DNA-elution in 80 µl distilled water (sterile). DNA concentrations were measured 

spectrophotometrically using a NanoDrop1000 (PeqLab GmbH, Erlangen, Germany). 

Individuals were genotyped at 10 microsatellite loci using a panel of nine loci from a previous 

landscape genetics study (Bolfíková & Hulva 2012), with locus EEU1 added. The panel 

consisted of the following loci: EEU1, EEU2, EEU3, EEU4, EEU5 and EEU6 (Becher & 

Griffiths 1997), EEU12H, EEU37H, EEU43H, and EEU54H (Henderson et al. 2000). One 

primer per pair was 5`- labelled with a fluorescent dye (6-FAM or HEX). To save time and costs, 

we prepared (after optimization) four primer master-mixes (Mix-A to Mix-D, 50 µl each). Mix-A 

contained the primers for loci EEU1, EEU2, and EEU54H (all 1 µM), Mix-B consisted of 

primers for loci EEU6 (1 µM) and EEU12H (2 µM), Mix-C of primers for loci EEU3 (1µM) and 

EEU37H (2 µM), and Mix-D included the primers for loci EEU4 (4 µM) and EEU5 (2 µM). 

Primer pair EEU43H (3 µM) was run separately. The genotyping PCR mixture (10 µl) consisted 

of 5µl 2 Type-itTM multiplex mix (Qiagen, Hilden, Germany), 1 µl primer mix, 3 µl H2O and 1 

µl DNA (50-120 ng). Cycling conditions were equal for all four master-mixes and locus 
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EEU43H and were performed as touchdown-PCR: 95 °C 5 min, 4 {94 °C 30 s, 63 °C down to 

57 °C in 2 °C increments of 90 s each, 72 °C 30 s}, 31 {94 °C 30 s, 55 °C 90 s, 72 °C 30 s}, 

60 °C 30 min final elongation. Amplification products were analysed by capillary electrophoresis 

on an A3130xl automated sequencer (Thermo Fisher, Waltham, USA) using POP7 and sized by 

comparison to a Genescan™ 500 ROX™ Size Standard (ABI) using the software Genemapper 

v.3.7 following the manufacturer’s instructions. To avoid misleading results by allelic dropouts 

and false alleles, we applied a maximum likelihood approach (Miller et al. 2002) and genotyped 

each sample twice (in duplicates). We did not allow for any allele mismatch between duplicates. 

If there was a mismatch, the sample was removed and genotyped again in duplicates from freshly 

extracted DNA. Genotypes were only scored if no mismatch was detected; otherwise the sample 

was excluded from further analysis. We also excluded all individuals for which more than one 

locus had missing data.  

Data analysis: We calculated observed (HO) and expected heterozygosities (HE), number of 

alleles (NA), as well as potential deviations from Hardy-Weinberg equilibrium (HWE) using the 

program Cervus v.3.0.7 (Guo & Thompson 1992; Marshall et al. 1998; Kalinowski et al. 2007). 

We also used Cervus to search for matching genotypes across all samples. Tests for the presence 

of genotypic disequilibria among loci were performed using the software package Arlequin 

v.3.5.2.2 (Excoffier et al. 2005; Excoffier & Lischer 2010). The significance level α was 

Bonferroni-corrected and set at 0.001 (0.05: 45 pairwise comparisons). Potential presence of null 

alleles was assessed using Micro-Checker v.2.2.3 (Van Oosterhout et al. 2004). 

Although hedgehogs are solitary animals, their limited dispersal capacity (compared to larger 

mammals) may cause a population genetic structure by which closely related individuals may be 

living in closer proximity to each other than to more unrelated individuals. Because some 

clustering algorithms are affected by such associations of kin (Rodríguez-Ramilo & Wang 2012), 

we determined pairwise relatedness (r; Queller & Goodnight 1989) among all samples using the 

software package Coancestry v.1.0.1.9 (Wang 2011). Pairs with r > 0.5 were marked and 

subsequent cluster analysis (see below) was performed with and without these pairs 

(Supplementary Figure 1.2).  

The possible presence of genotypic clusters was evaluated both for the subset of only unrelated 

individuals (N = 65) and for the whole data set (N = 143). Here for this purpose, we used two 

software packages with a Bayesian clustering approach: Structure v.2.3.4 (Pritchard et al. 2000; 

Falush et al. 2003; Hubisz et al. 2009) and Baps v.6.0 (Corander et al. 2008, Cheng et al. 2013). 

As priors for Structure, we applied the admixture model in conjunction with the correlated allele 
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frequency model, because it is better suited to detect a subtle population structure, although this 

makes it more likely to overestimate the number of clusters K (Falush et al. 2003). The model 

was applied to K-values ranging from K = 1 to 8. The required allele frequency distribution 

parameter λ was estimated per run. To determine both appropriate burn-in and Markov chain 

lengths for parameter estimates of allele frequencies and membership coefficients per genotype 

in each genotypic cluster (Q), we set K = 1 and watched for the likelihoods to converge under 

various burn-in and run lengths. The final burn-in length was set at 20 000 iterations and Markov 

chains were run with a length of 200.000 iterations each. Each K was independently assessed 10 

times to verify the consistency of estimates across runs. The most likely K was determined using 

both the log likelihood values (as ΔK cannot be applied if K = 1) and by following the ΔK 

method (Evanno et al. 2005) using Structure Harvester (Earl & von Holdt 2012). For Baps the K 

prior ranged from 2 to 8 (as Baps cannot detect K = 1), whereby each K was independently 

assessed 10 times. In addition, we used a location prior by providing the GPS coordinates of 

each sample’s origin. We applied the algorithm to both ‘admixture’ and ‘no admixture’.  

Assignment: The threshold for the Q-value above which an individual will be assigned to a 

cluster is of importance because if the threshold is too high it may underestimate a structure that 

in reality exists, whereas a threshold which is too low will overemphasize a structure that in 

reality is not as pronounced as assumed. Here we chose a relatively conservative value of Q ≥ 

0.85 as the threshold for the assignment of individuals, thus allowing for some gene flow to have 

occurred among the inferred ancestral populations. Genetic distances between clusters of 

assigned individuals as well as the number of migrants (Nm) among clusters were estimated 

using Arlequin. Input files for the different programs were generated using the software Create 

(Coombs et al. 2008). Data are presented as means ± standard deviations (SD) unless otherwise 

stated. 

1.4 Results 

Genotyping: From the original dataset of 306 hedgehog samples, data from 156 individuals had 

to be excluded - 154 individuals were excluded because genotyping of their samples failed at 

more than one locus and two individuals were removed because the alleles of their duplicate 

sample genotypes did not match at all loci. In total, 150 (49%) were successfully genotyped at all 

ten loci. Out of these genotypic profiles, one profile occurred three times and five others twice, 

leaving 143 unique genotypes (Supplementary Table 1.2). The number of alleles per locus (NA) 

ranged from four (locus EEU12H) to 16 (EEU37H), with a mean of 10.9 ± 4.1 (Table 1.1). HO 

across all 143 unique genotypes ranged from 0.350 at locus EEU6 to 0.754 at locus EEU3, with 
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a mean of HO = 0.621 ± 0.133 (Table 1.1). Across all loci and individuals one locus (EEH37H) 

deviated significantly from HWE (Table 1.1). Although several loci indicated the potential 

presence of null alleles, the probability was generally very low. 
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Table 1.1: Indices of ten microsatellite loci across the 143 unique genotypes 

Locus Ntyped NA Allele size 

range (bp) 

HO HE HWE fNull 

EEU1 143 8 129 - 143 0.671 0.773 + 0.062 

EEU2 141 13 257 - 281 0.752 0.863 + 0.064 

EEU3 142 15 131 - 181 0.754 0.868 + 0.064 

EEU4 143 14 144 - 170 0.699 0.785 + 0.052 

EEU5 143 13 107 - 139 0.678 0.711 + 0.011 

EEU6 143 6 145 - 159 0.350 0.331 + -0.049 

EEU12H 143 4 91 - 97 0.497 0.615 + 0.098 

EEU37H 142 16 236 - 280 0.676 0.839 - 0.095 

EEU43H 143 12 146 - 172 0.657 0.730 + 0.047 

EEU54H 142 8 276 - 296 0.479 0.551 + 0.067 

Mean 

SD 

142.5 

0.71 

10.9 

4.09 

 0.621 

0.133 

0.707 

0.167 
 

 

Ntyped: number of individuals successfully genotyped at that locus, NA: number of alleles per locus, bp.: base pairs, 
HO: observed heterozygosity, HE: heterozygosity expected under HWE, HWE: Hardy-Weinberg equilibrium. (+): locus was 
at HWE, (-): locus deviated from HWE, fNull: probability for the presence of null-alleles (underlined values indicate the 
potential presence of null-alleles), SD: standard deviation. 

Pairwise relatedness analysis revealed numerous pairs of individuals with a high relatedness index 

(r ≥ 0.5). Removal of these related individuals reduced the data set to 65 unrelated hedgehogs. 

Presence of linkage disequilibria (LD) among the ten loci was tested both for 65 hedgehogs 

(unrelated individuals) and for 143 hedgehogs (all individuals). Among the 65 hedgehogs one out 

of 45 pairwise comparisons among the ten loci and among the 143 hedgehogs 12 pairwise 

comparisons showed LD, although all loci had previously been declared to be independently 

inherited (Becher & Griffiths 1998; Henderson et al. 2000; the latter also included the loci from 

Becher & Griffiths 1998, Bolfiková & Hulva 2012). In our study, hedgehogs were sampled over 

a very large area, therefore potentially violating the assumption of an unstructured population, as 

expected for a small mammal in a highly fragmented landscape. The deviation from HWE at 

locus EEU37H and the linkage disequilibria may thus have been the result of the Wahlund effect 
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(Wahlund 1928). We therefore searched for an underlying population structure, first among the 

unrelated individuals and then among all individuals.  

When analyzing the 65 unrelated individuals (Figure 1.2), all individuals were assigned to a single 

cluster (mean LnP(K) = -2268.81 ± 0.481; results from Structure). When analyzing all 143 

individuals (related + unrelated), both clustering algorithms (Structure, Baps) indicated the 

presence of three to four genotypic clusters (Table 1.2). The ΔK estimate (Structure Harvester) 

favoured three clusters over four (ΔK for K = 3 was 52.25; ΔK for K = 4 was 51.4), whereas 

Baps favoured the presence of four clusters, with the fourth cluster being represented by two 

individuals (sampled at the same location). The likelihood for the number of genotypic clusters 

(K) to reflect the true number of ancestral populations had the following values (derived from 

Baps): for K = 3: 0.00136, K = 4: 0.98883, and for K = 5: 0.0098). Using a value of Q ≥ 0.85 

(Structure), 74 out of 143 genotypes (~52%) were assigned to either one of three genotypic 

clusters: cluster 1 with 29 genotypes, cluster 2 with 14 genotypes (all individuals but one were 

from ‘Tierpark’), and cluster 3 with 31 genotypes (all but one from ‘Treptower Park’). The 69 

remaining genotypes were admixed, with admixture occurring across all clusters (Table 1.2, 

Supplementary Figure 1.1). Each cluster was at HWE. Observed (HO) and expected 

heterozygosities (HE) were HO = 0.623 and HE = 0.685 for cluster 1 (N = 29), for cluster 2 (N 

= 14) they were HO = 0.557 and HE = 0.524, and for cluster 3 (N = 31) they were HO = 0.578 

and HE = 0.651. Pairwise genetic distances (FST) among all clusters were significant (p < 0.05) 

with FST = 0.169 between clusters 1 and 2, FST = 0.11 between clusters 1 and 3, and FST = 

0.192 between clusters 2 and 3.  
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Figure 1.2: Map of Berlin and its surroundings and showing the locations from 64 out of 65 unrelated samples (one 
sample not shown because it was located 70 km north of Berlin), later by Structure identified as one cluster 

The number of migrants (Nm) per generation also differed among the three clusters. It was Nm 

= 1.22 between clusters 1 (wide-spread) and 2 (‘Tierpark’), Nm = 2.02 between clusters 1 and 3 

(‘Treptower Park’) and Nm = 1.05 between clusters 2 and 3. Applying the Baps clustering 

algorithm led to results very similar to the ones obtained from the Structure analysis, except for 

the introduction of a fourth cluster (2 individuals only) and an increase in the number of 

hedgehogs assigned to any cluster (Table 1.2). This increase in the number of individuals 

assigned to a cluster was particularly pronounced in cluster 1, into which Structure had only 

assigned 29 hedgehogs, whereas the Baps algorithm assigned three times as many individuals to 

that cluster (N = 87). Following the Baps assignment, hedgehogs from cluster 1 were also 

present in the ‘Tierpark’ and the ‘Treptower Park’.  

Release of hedgehogs after rehabilitation: Although rescue facility’s had no particular rules 

regarding the selection of release sites for rehabilitated hedgehogs, general policy was to release 

hedgehogs into favourable habitats, independent of their point of geographic origin. This lead to 

the release of hedgehogs at distances far from the facilities, in some cases at distances of >100 

km. 
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1.5 Discussion 

Considering only unrelated individuals, hedgehogs were assigned to a single cluster whose 

members were spread across the city (Figure 1.2). Such lack of genetic population structure 

despite the presence of many potential barriers was surprising, and is in contrast to results from 

urban hedgehogs in the City of Zürich (Switzerland), where a strong differentiation had been 

observed in a study on 149 hedgehogs in an area of ~100 km² (Braaker et al. 2017). There, 

despite the much smaller spatial scale, three genotypic clusters had been inferred. The Zurich 

hedgehog clusters were well delineated by a major inner-city transportation axis as an 

anthropogenic barrier and two rivers as natural barriers (Braaker et al. 2017). The authors 

concluded that urban green areas were the most suitable habitat type to facilitate gene flow, 

whereas all other land cover types were more likely to impede gene flow (Braaker et al. 2017).  

The Zurich study differed from ours in several aspects: Their threshold for assigning individuals 

to a genetic cluster was considerably lower (Q ≥ 0.65 instead of Q ≥ 0.85), and they did not 

consider the potential effect of association of kin on genetic population structure. In our study, 

unrelated individuals did not demonstrate any obvious population genetic structure, although the 

city of Berlin is much larger than Zurich and even more divided by several highways and large 

rivers or canals. 

The inclusion of all individuals indicated the presence of at least three genotypic clusters (Q ≥ 

0.85), two of which were spatially well delineated (clusters 2 and 3, STRUCTURE, the ‘Tierpark’ 

and the ‘Treptower Park’). As this population genetic structure only appeared if related 

individuals were included into the cluster analysis, we suggest the differentiation detected here to 

be a reflection of an underlying kinship network of ‘family clans’ rather than to be a reflection of 

allele frequencies of three ancestral populations. Such a ‘family clan’ structure would also explain 

the local concentration of cluster 2 individuals in the ‘Tierpark’ and of cluster 3 individuals in the 

‘Treptower Park’. Although the ‘Tierpark’ is a large park-like area (~160 ha) that was preserved 

after WW II and established as a zoological garden in 1954, it is fully fenced and surrounded by 

big streets in the north and west and railway tracks in the east and south. Thus, gene flow 

between hedgehogs from the ‘Tierpark’ and the surrounding areas is clearly restricted, explaining 

the confinement from hedgehogs of cluster 2 to the ‘Tierpark’. This is also evidenced by the 

significant pairwise FST values, which were the highest between clusters 2 and 3 (FST = 0.192) and 

clusters 2 and 1 (FST = 0.169). Interestingly, the hedgehogs inhabiting the ‘Treptower Park’ 

(cluster 3) are only strongly differentiated from the ones living in the ‘Tierpark’ (FST = 0.192, 

lowest migration rate with Nm = 1.05), but not from the wider-spread cluster 1 (FST = 0.11, 
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highest migration rate with Nm = 2.02). The main difference to the location ‘Tierpark’ is that the 

‘Treptower Park’ is not fenced in and always accessible. However, it is bordered on one side by 

the river Spree and on its three other sides by heavy-traffic roads. An additional heavy-traffic 

road is crossing the park longitudinally. Yet these barriers appear still to be more penetrable for 

hedgehogs than those in the ‘Tierpark’. This leads to a question; why have these family-clans 

become so large? We think the reason for that is the low landscape resistance within the parks, 

whereas at the borders of the parks landscape resistance increases drastically (cf. Braaker et al. 

2017). 

Expected heterozygosity (HE) for individuals of the most wide-spread cluster (cluster 1: HE = 

0.685; N = 29) was similar and even higher than the value of HE = 0.68 measured in a country-

wide study in the Czech Republic (average sample site distances >450 km; Bolfíková & Hulva 

2012), indicating that in the case of Berlin, the urban environment might not lead to a reduction 

of genetic variability in hedgehogs. Because individuals from cluster 2 and 3 of our study were 

confined to single parks, either to the ‘Tierpark’ or to the ‘Treptower Park’, we expected to 

detect low observed (HO) and expected heterozygosities (HE) there. Even though the values were 

indeed lower than in the widespread cluster 1, they were only lower by a small margin (cluster 2: 

HO = 0.557/ HE = 0.524; cluster 3: HO = 0.578/ HE = 0.651). These values were similar to those 

measured in free-ranging hedgehog populations from New Zealand affected by a founder effect 

(HO = 0.42-0.52/ HE = 0.51-0.57; Bolfíková et al. 2013).  

In contrast to many other mammalian species, Hedgehogs seem to lack a clear dispersal phase 

(Morris & Reeve 2008). They rarely cover distances larger than 4 km (Morris & Reeve 2008) and 

are restricted in their movements by roads and other barrier-like structural elements (Doncaster 

et al. 2001; Rondinini & Doncaster 2002). Thus, the emergence of a genetic population structure 

due to restricted gene flow as seen in Zurich appears to be inevitable. Yet hedgehogs in Berlin 

did not differentiate into such a clear population genetic structure, although the city of Berlin is 

much larger (875.94 km2) than Zurich. We thus expected dispersal to be even less likely and 

therefore a genetic population structure to be even more pronounced and clearly delineated by 

space. This was not the case. Our results and observations would be compatible with the idea 

that all Berlin hedgehogs derived from a single ancestral population.  

But because our results provide only a temporal snapshot, we do not know whether the spatial 

discrimination of clusters 2 (‘Tierpark’) and 3 (Treptower Park’) is the beginning of a process 

leading either to population differentiation or to complete admixture, or whether it may 

represent a stable genotypic equilibrium. 
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Although we currently do not have detailed knowledge about the ancestry of hedgehogs in 

Berlin, it is well known that hedgehogs have lived for centuries in Berlin and have experienced 

Berlin’s increasing urbanization throughout this period (Herter 1933). This raises the question as 

to what could be the reasons for the lack of a clear, spatially derived population genetic structure 

in a species that is considered to be substantially constrained by physical urban structures such as 

waterways, motorways, railways, and built-up areas (Doncaster et al. 2001; Baker & Harris 2007; 

Morris & Reeve 2008), structures that characterize Berlin?  

We argue that the main reason for our finding is the large proportion of green areas in Berlin. 

The City of Berlin (87.594 ha) is covered by 15.752 ha of forests (18 %) and 10.885 ha of public 

green patches (12.4 %), such as cemeteries, parks and gardens (SenUVK, 2018, Stillfried et al. 

2017). These areas provide a connective web of suitable habitats within the urban matrix, 

improving the opportunities for hedgehogs to maintain some amount of gene flow across the 

city. However, we cannot exclude the effect of other factors on admixture. Given home ranges 

of 0.77 – 2.78 ha in residential areas (Dowding et al. 2010), the distances to be covered to 

establish gene flow between ‘family clan’ clusters are quite large for a short-legged ground-

dwelling species, although numerous small and larger green areas can be stepping stones to link 

distant parts of the city. We therefore assume that admixture will have been enhanced by animals 

released by hedgehog rescue facilities. These events are at present not fully quantified, but our 

interviews with personnel from rescue facilities confirmed that they are a regular occurrence. 

Such rescue related translocations have also been observed in other studies (e.g. Molony et al. 

2006 or Braaker et al. 2017).  

1.6 Conclusions 

We hypothesized that urban hedgehog, a species with relatively low mobility and low dispersal 

capacity, will be highly influenced by fragmented urban landscapes leading to genetic isolation of 

populations and thus a highly structured meta-population. Yet the hedgehog population in the 

city of Berlin is not genetically structured if only unrelated individuals are being taken into 

account. A population genetic structure becomes only visible if related individuals are also 

included in the analysis. These ‘family clan’-clusters are likely realized naturally across the 

numerous green patches Gene flow between of Berlin’s urban matrix although anthropogenic 

translocations cannot be excluded. To maintain the currently existing genetic diversity in Berlin’s 

hedgehog population, we suggest its repeated monitoring by census measures and population-

wide genetic analysis to determine if current clusters (‘family clans’) are at risk of becoming 

isolated.  
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Table 1.2: Results of both clustering algorithms (Structure, Baps) and their assignment for each sample 

internal 
ID locality 

STRUCTURE 
Q-value for 
cluster 1 

STRUCTURE 
Q-value for 
cluster 2 

STRUCTURE 
Q-value for 
cluster 3 

Assignment 
by 
STRUCTURE 
Q ≥ 0.85 

Assignment 
by BAPS 
(location 
prior) 

147 Tiergarten, Berlin 0,87559 0,10548 0,01895 1 4 

167 Tiergarten, Berlin 0,88068 0,10901 0,01031 1 4 

176 Eisenhuettenstadt 0,85406 0,11966 0,02629 1 1 

161 Hans-Baluschek-Park,  0,86127 0,11218 0,02655 1 1 

311 Tierpark, Berlin 0,87213 0,10962 0,01824 1 1 

334 12623 Berlin 0,86935 0,11628 0,01438 1 1 

335 12623 Berlin 0,85235 0,11496 0,03271 1 1 

220 
Friedenstr., Berlin Near 
Volkspark Friedrichshain 0,87103 0,11977 0,00921 1 1 

175 
Volkspark Prenzlauerberg, 
Berlin 0,86135 0,105 0,03368 1 1 

199 Hellersdorf,Berlin 0,86134 0,12691 0,01175 1 1 

159 Prenzlauerberg 0,85732 0,10238 0,04031 1 1 

338 Park am Weidengrund 0,87595 0,11224 0,01182 1 1 

117 Near graveyard 0,88408 0,10591 0,01 1 1 

326 
Zum Erlenbruch, 15344 
Strausberg 0,86423 0,11255 0,02321 1 1 

156 Buergerpark Pankow-Berlin 0,86845 0,11301 0,01854 1 1 

341 
Kleingartenanlage 750 Jahre 
Berlin, 13057 Berlin 0,85329 0,10368 0,04302 1 1 

328 
Warnem・der Str. 18, 
13059 Berlin 0,86432 0,11747 0,01821 1 1 

329 
Warnem・der Str. 18, 
13059 Berlin 0,86724 0,1151 0,01767 1 1 

330 
Warnem・der Str. 18, 
13059 Berlin 0,87485 0,1077 0,01746 1 1 

337 
KGA Maerchenland, 13089 
Berlin 0,87728 0,10819 0,01456 1 1 

231 
Friedenstr. 8, 16356 
Ahrensfelde 0,87273 0,10608 0,02116 1 1 

257 
Dietrichstr. 5, 16356 
Ahrensfelde 0,87167 0,10645 0,0219 1 1 

193 Jungbornstr., 13129 Berlin 0,85709 0,12218 0,02072 1 1 

189 Strasse 7, 13129 Berlin 0,85836 0,11349 0,02814 1 1 

194 
Schwarzwaldstr./Ilsenstr., 
13129 Berlin 0,85756 0,11789 0,02457 1 1 
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185 
Gutenfelsstr. 14, 13129 
Berlin 0,8736 0,11369 0,01271 1 1 

187 
Gutenfelsstr. 14, 13129 
Berlin 0,8837 0,1066 0,0097 1 1 

113 Choise-le-Roi-Str. 3, Berlin 0,88496 0,10623 0,00881 1 1 

118 

Vielitzsee Ortsteil 
Strubensee, 16835 green 
area 0,85436 0,13413 0,01153 1 1 

179 Eisenhuettenstadt 0,84074 0,10226 0,05701 admixed 1 

243 Zeuthen 0,6249 0,20766 0,16744 admixed 1 

129 
Rohrwallallee 10, 12527 
Berlin 0,83142 0,10412 0,06446 admixed 1 

120 Altglienike Feldweg 0,84766 0,10475 0,0476 admixed 1 

137 
Kablower Weg 89, 12526 
Berlin  0,78369 0,0984 0,1179 admixed 1 

138 
Kablower Weg 89, 12526 
Berlin 0,8267 0,1031 0,0702 admixed 1 

125 
Riesserseestr. 10, 12527 
Berlin 0,84665 0,11413 0,03923 admixed 1 

135 
Korkedamm 73, 12524 
Berlin 0,69588 0,08972 0,21436 admixed 1 

127 
Rehwiese, Gerkrathstraße 2 
Park 0,72131 0,14963 0,12906 admixed 1 

182 Zehlendorf, Berlin 0,40151 0,09898 0,49948 admixed 1 

158 
Hans-Baluschek-Park, 
10829 Berlin 0,56664 0,07147 0,36189 admixed 1 

169 
Hans-Baluschek-Park, 
10829 Berlin 0,75432 0,10163 0,14405 admixed 1 

235 
Glasberger Str. 43, 12555 
Berlin 0,77728 0,10906 0,11368 admixed 1 

110 Trainierbahn Hoppegarten 0,55419 0,42731 0,01849 admixed 1 

A35_088 Treptower Park 0,66656 0,14738 0,18608 admixed 1 

A4_317 Treptower Park 0,81876 0,16614 0,01512 admixed 1 

A61_108 Treptower Park 0,67049 0,09899 0,23051 admixed 1 

A68_108 Treptower Park 0,71856 0,17835 0,10308 admixed 1 

126 
Moldaustr. 30, 10319 Berlin 
near Tierpark 0,68485 0,2057 0,10944 admixed 1 

128 
Moldaustr. 24, 10319 Berlin 
near Tierpark 0,13048 0,18259 0,68692 admixed 1 

136 
Moldaustr. 24, 10319 Berlin 
near Tierpark 0,2581 0,25296 0,48897 admixed 1 

174 Tierpark, Berlin 0,48697 0,40986 0,10316 admixed 1 
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308 Tierpark, Berlin 0,8438 0,13492 0,02127 admixed 1 

310 Tierpark, Berlin 0,45013 0,09578 0,45409 admixed 1 

314 Tierpark, Berlin 0,50102 0,45028 0,0487 admixed 1 

317 Tierpark, Berlin 0,66602 0,15881 0,17519 admixed 1 

320 Tierpark, Berlin 0,22576 0,45684 0,3174 admixed 1 

333 12623 Berlin 0,76214 0,22126 0,01663 admixed 1 

143 Tiergarten, Berlin 0,82986 0,15939 0,01076 admixed 1 

152 Tiergarten, Berlin 0,79801 0,14577 0,05625 admixed 1 

166 Tiergarten, Berlin 0,78003 0,16683 0,05316 admixed 1 

309 Nordbahnhof park 0,72988 0,1093 0,16079 admixed 1 

134 
Volkspark Prenzlauerberg, 
Berlin 0,84225 0,1053 0,05244 admixed 1 

142 
Volkspark Prenzlauerberg, 
Berlin 0,62693 0,08785 0,28521 admixed 1 

153 
Volkspark Prenzlauerberg, 
Berlin 0,77372 0,0954 0,13087 admixed 1 

168 
Volkspark Prenzlauerberg, 
Berlin 0,75805 0,0945 0,14747 admixed 1 

170 
Volkspark Prenzlauerberg, 
Berlin 0,35675 0,0564 0,58687 admixed 1 

172 
Volkspark Prenzlauerberg, 
Berlin 0,83185 0,10633 0,06181 admixed 1 

324 
Eisenacher Str.,12629 Berlin 
near park 0,71554 0,09224 0,19223 admixed 1 

300 

Kastanienallee 122/126, 
12627 Berlin near Teupitzer 
Park 0,83854 0,12196 0,03952 admixed 1 

261 
Wolfshofstr. 25, 13591 
Berlin 0,20168 0,04025 0,75806 admixed 1 

340 Mahlerstraße, 13088 Berlin 0,75765 0,09987 0,14248 admixed 1 

241 
Glambecker Ring 4, 12679 
Berlin 0,66759 0,16157 0,17085 admixed 1 

114 
Togostr. 45, 13351 Berlin 
near Volkspark Rehberge 0,61322 0,10559 0,28119 admixed 1 

248 13053 Berlin 0,58362 0,0891 0,32725 admixed 1 

119 
Ghanastr. 27, 13351 Berlin 
near Volkspark Rehberge 0,7999 0,09627 0,10382 admixed 1 

139 
Falkenberger Krugwiesen, 
13057 Berlin 0,78143 0,11325 0,10533 admixed 1 

140 
Falkenberger Krugwiesen, 
13057 Berlin 0,73941 0,18507 0,0755 admixed 1 

150 Buergerpark Pankow-Berlin 0,66583 0,13902 0,19514 admixed 1 
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188 
Schwarzelfenweg 19, 13088 
Berlin 0,59525 0,23319 0,17157 admixed 1 

116 Alt-Tegel 47c, 13507 Berlin 0,82319 0,14861 0,0282 admixed 1 

191 
Strasse 26 Nr. 30, 13129 
Berlin near green area 0,65149 0,31845 0,03009 admixed 1 

196 
Schwarzwaldstr., 13129 
Berlin 0,67859 0,10107 0,22037 admixed 1 

186 
Gutenfelsstr. 14, 13129 
Berlin 0,81717 0,1626 0,02022 admixed 1 

198 
Gutenfelsstr. 14, 13129 
Berlin 0,76845 0,1193 0,11227 admixed 1 

200 
Gutenfelsstr. 14, 13129 
Berlin 0,8493 0,10802 0,04267 admixed 1 

192 Urbacher Str., 13129 Berlin 0,54983 0,25383 0,19634 admixed 1 

184 Freischuetzstr., 13129 Berlin 0,81933 0,14711 0,03358 admixed 1 

203 Freischuetzstr., 13129 Berlin 0,8327 0,13544 0,03187 admixed 1 

197 Krontalerstr., 13125 Berlin 0,84704 0,10899 0,04399 admixed 1 

A3_317 Treptower Park 0,77842 0,11654 0,10505 admixed admixed 

A34_078 Treptower Park 0,67359 0,09012 0,23627 admixed admixed 

144 Tierpark, Berlin 0,10456 0,88882 0,00662 2 2 

146 Tierpark, Berlin 0,10652 0,8851 0,00836 2 2 

154 Tierpark, Berlin 0,10959 0,88179 0,00862 2 2 

165 Tierpark, Berlin 0,10523 0,88487 0,00991 2 2 

305 Tierpark, Berlin 0,10535 0,88925 0,00539 2 2 

306 Tierpark, Berlin 0,10434 0,89067 0,005 2 2 

307 Tierpark, Berlin 0,12173 0,85912 0,01916 2 2 

312 Tierpark, Berlin 0,10548 0,88768 0,00684 2 2 

313 Tierpark, Berlin 0,10518 0,88331 0,0115 2 2 

315 Tierpark, Berlin 0,11634 0,86767 0,01601 2 2 

318 Tierpark, Berlin 0,11617 0,87305 0,01078 2 2 

319 Tierpark, Berlin 0,11028 0,87549 0,01424 2 2 

342 Tierpark, Berlin 0,11259 0,87716 0,01028 2 2 

344 
IZW Garten, Berlin 
(bordering with Tierpark) 0,10948 0,87852 0,01199 2 2 

141 Tierpark, Berlin 0,14033 0,79122 0,06844 admixed 2 

149 Tierpark, Berlin 0,10468 0,79688 0,09844 admixed 2 

321 Tierpark, Berlin 0,15174 0,82023 0,02802 admixed 2 

322 Tierpark, Berlin 0,1618 0,8123 0,02591 admixed 2 

157 Treptower Park 0,02233 0,01133 0,96636 3 3 
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345 Treptower Park 0,01293 0,01151 0,97556 3 3 

346 Treptower Park 0,02053 0,00877 0,97068 3 3 

348 Treptower Park 0,07228 0,0132 0,9145 3 3 

349 Treptower Park 0,0197 0,00997 0,97034 3 3 

350 Treptower Park 0,01276 0,01003 0,97721 3 3 

A1_317 Treptower Park 0,01622 0,00786 0,97591 3 3 

A10_028 Treptower Park 0,02804 0,02522 0,94674 3 3 

A11_028 Treptower Park 0,06713 0,02515 0,90771 3 3 

A12_028 Treptower Park 0,03142 0,0546 0,914 3 3 

A13_028 Treptower Park 0,04447 0,01617 0,93935 3 3 

A14_028 Treptower Park 0,01659 0,00572 0,97765 3 3 

A15_028 Treptower Park 0,01453 0,01432 0,97112 3 3 

A16_028 Treptower Park 0,04624 0,01015 0,94359 3 3 

A2_317 Treptower Park 0,03028 0,01088 0,95885 3 3 

A20_038 Treptower Park 0,01454 0,01811 0,96735 3 3 

A21_038 Treptower Park 0,05401 0,01349 0,9325 3 3 

A22_038 Treptower Park 0,04167 0,01371 0,94463 3 3 

A25_078 Treptower Park 0,01262 0,02414 0,96325 3 3 

A27_078 Treptower Park 0,02487 0,03366 0,94146 3 3 

A28_078 Treptower Park 0,01631 0,01948 0,96424 3 3 

A30_078 Treptower Park 0,02939 0,01268 0,95794 3 3 

A31_078 Treptower Park 0,01652 0,04733 0,93614 3 3 

A32_078 Treptower Park 0,01376 0,01006 0,97617 3 3 

A37_088 Treptower Park 0,01249 0,01269 0,97483 3 3 

A43_088 Treptower Park 0,02567 0,02771 0,94662 3 3 

A47_098 Treptower Park 0,01487 0,01031 0,97481 3 3 

A5_317 Treptower Park 0,02926 0,0273 0,94345 3 3 

A59_108 Treptower Park 0,0119 0,00944 0,97865 3 3 

A9_028 Treptower Park 0,00902 0,00582 0,98515 3 3 

252 
Friedenstr., 16356 
Ahrensfelde 0,04766 0,01531 0,93704 3 3 

A56_098 Treptower Park 0,12642 0,03009 0,84349 admixed 3 

A62_108 Treptower Park 0,13874 0,02767 0,83359 admixed 3 

343 Tierpark, Berlin 0,16607 0,05859 0,77535 admixed admixed 
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Figure 1.3: Taking a saliva sample from a hedgehog in Treptower Park. Picture by Rohit Chakravarty 
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2.1 Abstract 

By applying second‐generation sequencing technologies to microsatellite genotyping, sequence 

information is produced which can result in high‐resolution population genetics analysis 

populations and increased replicability between runs and laboratories. In the present study, we 

establish an approach to study the genetic structure patterns of two European hedgehog species 

Erinaceus europaeus and E. roumanicus. These species are usually associated with human settlements 

and are good models to study anthropogenic impacts on the genetic diversity of wild 

populations. The short sequence repeats genotyping by sequence (SSR‐GBS) method presented 

uses amplicon sequences to determine genotypes for which allelic variants can be defined 

according to both length and single nucleotide polymorphisms (SNPs). To evaluate whether 

complete sequence information improved genetic structure definition, we compared this 

information with datasets based solely on length information. We identified a total of 42 markers 

which were successfully amplified in both species. Overall, genotyping based on complete 

sequence information resulted in a higher number of alleles, as well as greater genetic diversity 

and differentiation between species. Additionally, the structure patterns were slightly clearer with 

a division between both species and some potential hybrids. There was some degree of genetic 

structure within species, although only in E. roumanicus was this related to geographical distance. 

The statistically significant results obtained by SSR‐GBS demonstrate that it is superior to 

electrophoresis‐based methods for SSR genotyping. Moreover, the greater reproducibility and 
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throughput with lower effort which can be obtained with SSR‐GBS and the possibility to include 

degraded DNA into the analysis, allow for continued relevance of SSR markers during the 

genomic era. 

2.2 Introduction 

Second‐generation sequencing technologies are revolutionizing not only genome‐wide analyses 

but also genotyping approaches. Several genotyping by sequencing methods have been 

developed and refined to the point that large parts of the genome can be covered, 

RAD‐sequencing (Restriction Site associated DNA) being the most prominent example 

(Andrews, Good, Miller, Luikart, & Hohenloh et al., 2016). Additionally, next‐generation 

sequencing (NGS) technologies have a large potential for traditional microsatellite (simple 

sequence repeat, SSR) analysis (de Barba et al., 2017). Although RAD‐sequencing methods are 

becoming more widely adopted, they still require relatively high coverage per locus and thus 

high‐throughput sequencing (Hodel et al., 2016). With lower coverage, the amount of missing 

data increases, compromising population genetic analyses of the subsequent datasets (Arnold, 

Corbett‐Detig, Hartl, & Bomblies, 2013; Curto, Schachtler, Puppo, & Meimberg, 2018). 

Here, we use the term genotyping by sequencing (GBS) in the context of Elshire et al. (2011) and 

Vartia et al. (2016), referring to the genotype determination via second‐generation sequencing 

data, Illumina being the most commonly used technology. At its most extreme, GBS is 

whole‐genome analysis applications such as the resequencing of population pools and 

individuals, as exemplified by the dense SNP genotyping in human population genetics (e.g., 

1000 Genomes Project Consortium, 2010; Li & Durbin, 2011) and animal breeding (e.g., Rubin 

et al., 2010; Daetwyler et al., 2014). As for most systems a reference genome is unavailable, 

downsizing is required, thus allowing the investigation of only a subset of loci within the genome 

(Cronn et al., 2012). Examples of these reduced representation approaches are the following: 

RAD‐sequencing (Baird et al., 2008), exon capture (Lemmon, Emme, & Lemmon, 2012), and 

amplicon sequencing. This last approach is genome downsizing to the largest extent, as only 

unique regions of the genome, such as single nucleotide polymorphisms (SNPs), are targeted. 

These methods can be further modified to fit high‐throughput approaches, such as with the use 

of inversion probes or genotyping by the thousand approaches (Campbell, Harmon, & Narum, 

2015; Hardenbol et al., 2003). 

Amplicon sequencing has a special role in SSR analysis (de Barba et al., 2017; Farrell, Carlsson, & 

Carlsson, 2016; Vartia et al., 2016; Šarhanová et al., 2018), and microsatellite amplification is the 
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method of choice for population genetics, due to the ability to recover multiple alleles per locus, 

resulting in a high statistical power with a low number of sequenced markers (Ellegren, 2004; 

Schlotterer, 2000). Despite the obvious advantages of whole‐genome sequencing approaches, 

genotyping of specific loci is more cost‐effective and more easily implemented, which is also one 

of the arguments found in recent reviews for the use of microsatellites in place of RAD/GBS 

(Hodel et al., 2017, 2016). Second‐generation sequencing methods facilitate new, more powerful 

applications using microsatellite loci by increasing the data collected and the possibility to reach 

high statistical power by increasing the number of markers per sample and the number of alleles 

per marker (de Barba et al., 2017; Tibihika, Curto et al., 2018; Vartia et al., 2016). Using this 

method, it is now possible to recover the complete sequence composition of the locus, including 

the repeat motif and SNPs in the flanking region. This approach makes it possible to overcome 

homoplasy characteristics of microsatellites (Vartia et al., 2016; Šarhanová et al., 2018). In these 

cases, shared alleles resulting from homoplasy would have the same number of repetitions but 

different flanking regions. Additionally, the application of GBS to SSR markers (SSR‐GBS) leads 

to an improvement in the reproducibility of data produced by different laboratories. Although 

problems caused by stutter bands remain, limitations associated with machine‐specific biases, the 

need to use the same size standards or the ‘plus A peak’ artefact do not apply to SSR‐GBS. For 

these reasons, SSR markers are one of the most promising and obvious choices for GBS 

applications, and SSR‐GBS has the potential to overcome some of the shortcomings associated 

with traditional microsatellite analysis when compared to RADs (Hodel et al., 2017, 2016). 

The primary advantage of RAD‐seq is the high number of SNPs that can be detected across the 

genome with relatively low cost and without previous genomic information (Andolfatto et al., 

2011; Smith et al., 2010; Sonah et al., 2013). The high number of loci recovered with RAD‐seq 

allows for the recovery of population genetic differentiation patterns (Schopen, Bovenhuis, 

Visker, & Van Arendonk, 2008). However, there are some limitations associated with RAD‐seq, 

such as the difficulty in detecting paralogs without a reference genome, the high amount of 

missing data, and biases caused by the use of restriction enzymes that influence heterozygosity 

estimates, especially when stringent data filtering is implemented (Hodel et al., 2017). Further, 

SSR markers’ costs and data collection efforts do not increase linearly as a function of sample 

size. This compares favourably to RAD‐seq when genotyping high numbers of individuals (in 

the order of thousands), or for short‐term projects (Hodel et al., 2016). With the lower costs of 

the SSR‐GBS approach, this advantage is expected to be even greater. In this respect, SSR‐GBS 

has similarities with the genotyping by the thousands approach (Campbell et al., 2015). 
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In this paper, we present the development of SSR markers and their application in multiplexed 

amplifications to measure genetic variation in two species of hedgehogs: the European hedgehog 

(Erinaceus europaeus) and the northern white‐breasted hedgehog (Erinaceus roumanicus). Both 

species occur in Austria where their ranges form a contact zone. These ranges are classic 

examples of postglacial recolonization patterns and the formation of a secondary contact zone in 

response to this process (Hewitt, 1999; Santucci, Emerson, & Hewitt, 1998). It has been 

hypothesized that during the glacial periods, populations which found refuge in the Iberian and 

Italian peninsulas diverged from a common ancestor to E. europaeus, while those in the Balkans 

to E. roumanicus (Seddon, Santucci, Reeve, & Hewitt, 2001). Both species are closely related, but 

hybridization seems to only occur occasionally (Bogdanov, Bannikova, Pirusskii, & Formozov, 

2009) and molecular markers support a clear genetic division between the two species when they 

occur in sympatry (Bolfíková & Hulva, 2012). Thus, according to current knowledge, these 

species do not form a hybrid zone. However, all previous investigations of hybridization 

between these species performed thus far were based on a low number of markers. Both species 

seem to be generally present among human settlements (primarily in gardens/yards), but in the 

contact zone distribution of both species might be influenced by competition. Regardless, 

hedgehogs are species that are potentially impacted by fragmentation of their habitat by human 

infrastructures, roadways potentially being the most significant barriers for gene flow and 

migration (Huijser & Bergers, 2000; Orlowski & Nowak, 2004). These hedgehog species have a 

moderate genetic structure, and on a larger scale, they show isolation by distance pattern that is 

likely a consequence of recolonization after the last glaciation period (Bolfíková et al., 2017; 

Seddon et al., 2001). However, it has been verified that on small spatial scales the isolation by 

distance pattern can be disturbed due to habitat fragmentation and anthropogenic barriers to 

gene flow (Becher and Griffiths 1998), hence the importance of studying the genetic variation of 

these species in restricted geographical scales (Braaker, Kormann, Bontadina, & Obrist, 2017). 

Second‐generation sequencing technologies provide new opportunities, in particular in studies 

where several species are examined. By increasing the information provided by genetic markers, 

one can detect genetic structure at smaller geographical scales and may be able to detect residual 

signs of hybridization that would otherwise be undetected (Corander & Marttinen, 2006; Ryman 

et al., 2006). Traditionally, microsatellite markers used in cross‐species amplification could 

potentially lead to bias favouring the species from which the markers originated (Turini et al., 

2014). Additionally, biases in variability are also possible, which stem from modification, 

interruption or shortening of the repeat (Callen et al., 1993; Varshney, Graner, & Sorrells, 2005). 
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Therefore, in addition to mismatches at the primer site leading to an increase in null alleles, 

markers might show less variability when used in cross‐species amplification. 

Taking advantage of the Illumina technology, we developed markers from both species and 

tested their ability to amplify cross‐species markers. We determined the effectiveness of marker 

multiplexing to facilitate data collection and tested genotyping with the Illumina, using both 

length and sequence information in an SSR‐GBS approach, with tissue as well as noninvasive 

sampling, and outlined the results of genetic structure. The dataset we present here will form the 

basis of comprehensive studies of hedgehog genetic diversity, as well as investigations of 

introgression and gene flow between populations of the same and different species. 

Phylogeographic implications are outlined. 

2.3 Material and methods 

2.3.1 Sampling and DNA isolation 

A total of 82 individuals were used in the current study, 41 were identified as E. europaeus and 41 

as E. roumanicus (Supplementary Table 2.1). While most individuals were sampled in Austria, 

some were collected in other locations: one in Berlin, two in southeast Germany (Bavaria) near 

the border with Austria, two in eastern Slovakia, five in southwestern Czech Republic, one in 

northwestern Croatia, one in Hungary, and one in Macedonia. Sampling in Austria was 

concentrated in the areas surrounding Linz (35). Within this area, we subdivided the samples into 

four sub‐regions: Southeast Linz (3), East Linz (5), Linz (13), and West Linz (14). Four samples 

were collected in the areas surrounding Vienna in the province of Lower Austria, three of them 

in the region east of the city and one west of the city. Six samples were from southeast Austria in 

the province of Burgenland, five of them collected east of the lake Neusiedlersee. Twenty‐four 

samples were collected by three animal shelters: seven in Bludenz (Vorarlberg) and in Innsbruck 

(Tirol) in western Austria and 10 in Klagenfurt (Carinthia) in southern Austria. According to 

information from the shelters, these individuals were found within 100 km radius of the shelter 

and within the same province. Shelter samples were collected using mouth swabs from live 

animals, with the remaining ones collected as tissue samples from road fatalities. Individual 

samples were collected by several institutions (Supporting Information Table S1): the 

Biologiezentrum Linz, the Natural History Museum in Vienna, Leibniz Institute for Zoo and 

Wildlife Research, and the animal shelters. 

For DNA isolation of buccal swabs, the swabs were placed in 500 µl lysis buffer (2% SDS, 2% 

PVP‐40, 250 mM NaCl, 200 mM Tris‐HCl, 5 mM EDTA, pH 8) and 16.67 µl of proteinase K 
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(10 mg/ml) and incubated for 2.5 hr at 56°C. They were then removed with clean tweezers and 

placed in a NucleoSpin filter columns and centrifuged for 1 min at 562 g. For DNA purification, 

400 µl of the supernatant were mixed with 15 µl of MagSi‐DNA beads (size 300 nm, 

MagSi‐DNA beads from MagnaMedics) and 600 µl binding buffer (2 M GuHCl in 95% ethanol) 

and incubated at room temperature for 5 min. The supernatant was separated from the beads by 

placing samples on the magnetic separator SL‐MagSep96 (Steinbrenner, Germany) for one 

minute. The beads were washed twice with 600 µl of 80% ethanol. To remove excess ethanol, 

the beads were air‐dried at room temperature for 10 min. Two elutions were made with 20 and 

25 µl preheated (65°C) elution buffer (10 nM Tris with a pH of 8), and the beads were mixed 

with elution buffer and incubated for 5 min at room temperature. Tissue samples were isolated 

by the same procedure, with the exception that the product of lysis required no filtration, and the 

DNA was eluted in 30 and 50 µl of elution buffer. 

2.3.2 Marker development 

 Marker development was conducted using two low‐coverage MiSeq runs, where one individual 

each of E. europaeus and E. roumanicus were sequenced using shot‐gun genomic libraries without 

enrichment. The E. roumanicus sample was roadkill from Romania. The E. europaeus sample stems 

from a sample collected in the area of Berlin. Both runs produced 300 bp paired‐end reads using 

libraries prepared with an insert length of between 400 and 500 bp to allow for sequence overlap. 

Raw reads of both runs are available in GenBank's SRA repository with the accession number 

PRJNA495814. Low‐quality regions and adapter sequences were trimmed using Cutadapt v. 

0.11.1 (Martin, 2011), and the resulting reads were merged using PEAR vers. 0.9.4 (Zhang, 

Kobert, Flouri, & Stamatakis, 2013). These merged reads were used as input for the 

SSR_pipeline's script SSR_search.py in order to determine which sequences contained SSR 

motifs (Miller, Knaus, Mullins, & Haig, 2013). The following steps of quality control were 

included: The sequence contained a minimum of 40 bp flanking both sides of the motif; a 

minimum of six repeats for tetra‐ and pentanucleotide; a minimum of eight repeats for 

trinucleotides; and 10 repeats for dinucleotides. The number of sequences generated in the size 

range (350–550 bp) was sufficient for extracting a large number of microsatellite 

motif‐containing sequences. Sequences containing interruptions of the motif and mononuclear 

stretches larger than six bp were manually excluded; however, for some motif types this step 

resulted in a too low number of usable reads was not feasible, and in these cases some 

mononucleotide repeats were accepted. 
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Primers were constructed using Primer3 (Untergasser et al., 2012) as implemented in Geneious v. 

8.1.8 (Kearse et al., 2012) as a batch job under manual control. We only retained primers which 

produced amplicons containing the complete microsatellite repetition motif in the first or last 

300 bases. This allowed the merging of paired reads in 300 bp MiSeq runs. Primers were 

designed to be between 19 and 22 bp long, with an optimal melting temperature of 55 ºC. These 

were elongated with a recognition sequence that corresponded to the Illumina adapter, the 

forward primer being elongated with part of the P5 motif 

(TCTTTCCCTACACGACGCTCTTCCGATCT) and the reverse with part of the P7 motif 

(CTGGAGTTCAGACGTGTGCTCTTCCGATCT). These recognition sequences are necessary 

for a second PCR where eight‐bp index information and the rest of the Illumina adapters are 

added (P5: AATGATACGGCGACCACCGAGATCTACAC [Index] 

ACACTCTTTCCCTACACGACG; and P7: CAAGCAGAAGACGGCATACGAGAT [Index] 

GTGACTGGAGTTCAGACGTGT). Adapters were designed according to the Truseq 

chemistry because our initial experiments predated the release of the Nextera Chemistry that 

Illumina recommends for amplicon sequencing. For new experiments using this approach, the 

Nextera adaptors should be used. 

2.3.3 SSR-GBS amplicon library preparation 

Primers were first tested individually in 10 µl PCRs containing 5 µl of QIAGEN Multiplex PCR 

Master Mix (Qiagen, CA, USA), 4 µl of each primer (1 µM), and 1 µl of template/genomic DNA. 

PCR was conducted using the following temperature profile: 95 ºC for 15 min; 30 cycles of 95 ºC 

for 30 s, 55 ºC for 1 min, and 72 ºC for 1 min; and a final extension at 72 ºC for 10 min. PCR 

results were visualized using agarose gel electrophoresis, and primers which amplified a fragment 

of the correct size were combined in several primer mixes. 

For genotyping, three runs were performed using relevant samples. The first included two 

samples which were amplified using different multiplex approaches: singleplex, and multiplexes 

of 4 and multiplex of 10 primer pairs, with the 35 E. roumanicus primer pairs. The 10 primer pair 

multiplex PCR was able to recover all loci; therefore, this approach was applied for the following 

runs. These comprised the same mixes of the E. roumanicus primers as above and a single mix of 

all E. europaeus primers. Primer mix solutions for multiplex PCR were composed of a 

combination of 10 to 30 primer pairs, each primer having a final concentration of 1 µM 

(Supplementary Table 2.2). Multiplex amplification was performed using a protocol adapted 

from Curto et al. (2013). PCRs contained 0.5 µl of primer mix, 1 µl of DNA, 5 µl of QIAGEN 

Multiplex PCR Master Mix and water to complete the final reaction volume of 10 µl. All 
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amplifications were performed using the same temperature profile as the single PCRs. PCR 

products from different primer mixes were mixed in equal volumes for each sample. This was 

primarily done to save time and cost, and a comparison with earlier experiments, where only a 

few primers were kept in multiplex (around 10), did not show an obvious change in the rate of 

success (e.g., increased dropout of loci and alleles). 

Before proceeding to the second PCR, unused primers and primer dimer constructs were 

removed from the first PCR. PCR clean‐up was performed using magnetic bead technology 

following the protocol from Agencourt AMPure XP PCR Purification with some slight 

modifications. Four microlitres of PCR product was mixed with 2.86 µl of AMPure XP beads 

(Beckman Coulter Inc., Bree, CA, USA) and incubated for 5 min at room temperature. Bound 

DNA beads were captured by an inverted magnetic bead extraction device, VP 407‐AM‐N (V&P 

Scientific, INC.) and washed twice in an 80% 200 µl ethanol solution for 45 s. Later, the beads 

were dried at room temperature for 5 min and eluted in 17 µl of elution buffer (65 ºC 10 mM 

Tris‐HCl, pH 8.3). 

For the second PCR, a unique combination of forward and reverse indexes were chosen, 

allowing unambiguous identification of each sample after the MiSeq run. The PCR was 

conducted in a total volume of 10 µl containing 2 µl of each primer (1 µM), 5 µl of QIAGEN 

Multiplex PCR Master Mix, and 1 µl of purified PCR product. The reaction was carried out, after 

an initial denaturation and activation at 95ºC for 15 min, using 10 cycles of 95ºC for 30 s, 58ºC 

for 60 s, and 72ºC for 60 s. The reaction was incubated at 72°C for 5 min as a final extension. 

The resulting product consisted of the following from 5’ to 3’: (a) P5 motif for flow cell 

hybridization, (b) index 1 consisting of 8 bp, (c) P5 sequencing primer, (d) specific forward 

primer, (e) target DNA for sequencing; specific reverse primer; (f) P7 sequencing primer, (g) 

index 2 consisting of 8 bp, and (h) P7 motif for flow cell hybridization. In total, 10 different 

Index 1 and 10 different Index 2 sequences were used, allowing 100 different libraries to be 

sequenced simultaneously. PCRs were visualized on a 1.8% agarose gel and then pooled in equal 

volumes. Measurement of the DNA concentration was not performed as the fluctuation in DNA 

content within one Multiplex reaction was higher than between two reactions; it was therefore 

assumed that normalization would not change the overall performance. 

The resulting pool was used as input for an Illumina MiSeq run to produce sequences used for a 

genotyping by sequencing procedure. The pool, ca. 100 µl, was purified with magnetic bead 

technology, as described above, to remove possible dimers prior to Illumina sequencing. The 

amplicon libraries were sequenced in three runs with calculated yields between 7.5 and 30 K 
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sequences per DNA sample over all markers assuming an average of 15 M reads from a MiSeq 

run. Thus, it was expected that between 250 and 1,000 sequences per locus per sample would be 

obtained. 

2.3.4 Sequence data extraction 

The Illumina run was analysed to determine sample genotypes in different steps (Figure 2.1). 

Extractions according to index combinations were automatically performed by the MiSeq 

machine, resulting in two fastq files containing all sequences per index, one for Read 1 and the 

other for Read 2. A combination of custom made scripts and third‐party programs was used for 

further processing of the samples, including quality control and trimming, merging of the paired 

reads, identification of primer sequences on both sides of sequences, and splitting the files 

according to primer sequences. Custom scripts were also used (Tibihika, Curto et al., 2018) and 

are available at github.com/mcurto/SSR‐GBS‐pipeline. First, paired reads were merged and 

quality controlled using the program PEAR. Reads were only merged if they overlapped for at 

least 10 bp with a p‐value below 0.01 for the highest observed expected alignment scores (OESs 

according to Zhang et al., 2013). Unmerged reads were not analysed further. Merging was only 

possible because primers were designed to allow the complete microsatellite repetition motif to 

be sequenced by one of the paired reads. By doing so, it was also possible to assess the amplicon 

length. Previous to merging, low‐quality regions (Phred <20) were trimmed. In a second step, 

script 1 was used to identify the primer sequences on both sides of the merged reads and then 

sort them according to the locus. According to our library preparation construct, the merged 

reads should start with the forward primer and end with the reverse primer sequence. All 

sequences not containing both primer motifs in the correct position were excluded. This step 

saved all sequences in one file by locus and sample. These files were used as input for subsequent 

genotyping analysis. 
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Figure 2.1: Summary of sequence analysis and genotyping approach. The top left panel shows an overview of the 
method. The right and bottom panels show decision trees concerning: allele call based on length (1), stutter control 
step (2), detection of SNP genotypes (3). L1 and L2 correspond to the two most frequent lengths found per sample and 
marker, while f(L1) and (L2) to their frequency. f(b1), f(b2), and f(b3) correspond to the frequencies of the most, 
second most and third most frequent nucleotides per position, respectively. f(bcomb1), f(bcomb2), and f(bcomb3) 
correspond, respectively, to the frequencies of the most, second most and third most frequent nucleotides 
combinations of two or more potential SNPs 
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2.3.5 Allele definition 

Alleles were defined based on the length of sequences and then on the occurrence of SNPs 

within each length class (Figure 2.1). With script 2 (Supplementary information Chapter 2: 

Application of an SSR-GBS marker system on an investigation of European Hedgehog species 

and their hybrid zone dynamics), the sequence lengths occurring in one file and their 

corresponding counts were calculated and saved. Subsequently, all sequences with a length below 

a threshold (300 bp) were excluded from genotyping. Amplicons were constructed to be larger 

than 400 bp, so length of markers below this read length was likely artefacts and was excluded. 

Potential alleles were classified based on their length frequency using script 3 (Figure 2.1). Loci 

comprising one length with a frequency equal to or >90 % of all reads were called homozygous 

for an allele characterized by the respective length. Genotypes were called heterozygous if the 

frequency of two lengths was >90 % of reads and if the frequency of both lengths differed by no 

more than 20 % (Figure 2.1). In a second step, the script 3 verified that the selected alleles were 

not the result of stutter. This was performed using the following three criteria (Figure 2.1): (a) 

the difference in length of the potential alleles is greater than one time the repeat motif length; 

(b) If condition one is not met, that is, if the two alleles differ by only one repeat, the allele of 

lower frequency must be longer than the one of higher frequency; (c) if condition two is not met, 

that is, if the two alleles differ in one repeat and the frequency of the shorter allele is lower than 

the frequency of the longer allele, then the shorter allele must have a frequency of 75% of the 

longer one. In Figure 2.1, we show one example of each case. The criteria were chosen in‐line 

with procedures used for allele calls based on chromatographic data. Programs (e.g., 

Genemapper, ABI as discussed in Johansson, Karlsson, & Gyllensten, 2003) frequently use the 

highest signal for allele call. In case of stutter bands in heterozygotes, the signal of the shorter 

allele and of a stutter band of the longer allele will be overlaid. This can lead to the shorter allele 

in a heterozygote having a stronger signal (or higher frequency in our case) than the longer allele. 

Our criteria take this into consideration and call a heterozygote if the stutter band pattern of a 

homozygote is interrupted (I), if one allele is potentially overlaid by stutter bands (II and III). 

After automated allele call, all data were plotted into histograms resulting in a graphic 

representation similar to traditional SSR chromatograms. This allowed for manual control of the 

allele call like standard for analysis using Genmapper or similar software (Meimberg et al., 2006). 

With this, our approach could be performed analogously to traditional fragment analysis. 

Generally, we were able to control for unspecific products. The typical stutter pattern of the 

homozygote genotypes and resulting from this the length frequency profile should look similar 

to a heterozygote genotype with overlaid stuttering. Only dinucleotide repeats required that a 
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larger number of alleles be manually corrected. For penta‐, tetra‐, and trinucleotide repeats, the 

number of errors was very low and few corrections were necessary. All steps up until the 

geographical representation of frequencies and the table of genotypes according to length can be 

run automatically using the wrapping script microsatPip. 

 
Figure 2.2: Number of reads per amplicon length. The left panel shows unambiguous heterozygote genotypes for tri‐, 
tetra‐, and pentanucleotide motifs. The right panel shows examples matching the three cases of the automatic stutter 
control: Case I, two alleles with a length difference above the repetition motif length; case II, two alleles with length 
difference equal to the motif length, whose the frequency of the shorter is higher than the longer one; case III, two 
alleles with length difference equal to the motif length, whose the frequency of the shortest allele is more than 75% of 
the longer one. Green bars correspond to amplicon lengths chosen as alleles by the genotyping method. Numbers 
above each bar indicate the allele length. The line above each graph indicates the chosen genotype and the 
corresponding number of reads supporting it 

After manual control, sequences corresponding to the alleles based on length, were separated 

using the script 4 and condensed into one consensus sequence using the script 5. Frequencies of 

the most frequent nucleotide per position above 70% were considered homozygous and below 

70% as potentially heterozygous. These heterozygous positions were indicated as ambiguous 

bases on the consensus sequence. For these cases, the consensus sequence was divided into two 

sequences based on the two most frequent nucleotides for that position using the script 6 (Figure 

2.1; Supplementary Table 2.3). In the event that more than one SNP occurred in a sequence, 

these positions were considered as linked and the two most frequent nucleotide combinations 

were selected. If more than two equal frequency nucleotide combinations were found, the SNPs 

were either called by hand or left as ambiguous positions. In case this sample was already 

heterozygous for allele length, only the most frequent SNP combination was chosen. This 
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approach was adopted under the assumption that sequencing errors and PCR errors such as 

chimeric sequences are less frequent than the sequences stemming from real alleles. For allele 

calling using the complete sequence information, each unique sequence (allele) was given a 

number and, according to which sequence was present for each sample, a codominant matrix 

was created. This was done using script 7. For comparison, the same was done with sequence 

length information, which was obtained after correcting the matrix produced by script 3 

(Supplementary Table 2.3). 

2.3.6 Population genetics analysis 

Population genetic analyses were performed using the codominant matrix as input with different 

standard programs. The dataset was analysed for marker variability and polymorphism 

information content, as well as for genetic structure patterns among samples. 

Variability measures per markers and population, such as number of alleles (Na) and observed 

(HO) versus expected (HE) heterozygosity, were calculated in GenAlEx v. 6.5 (Peakall & 

Smouse, 2006). Polymorphism information content (PIC) was obtained with the program Cervus 

v. 3.0.7 (Kalinowski, Taper, & Marshall, 2007). For comparison between genotyping approaches 

(length vs. complete sequence information) and primer sets (E. europaeus‐ or E. 

roumanicus‐specific primers), we also calculated genetic distances among individuals. This 

consisted of the average number of differing alleles per locus between each pair of samples. This 

was done using pairwise distance matrices containing the total number of different alleles per 

sample calculated with GenalEx. To facilitate graphical visualization, genetic distances were 

converted into average number of different alleles per locus. Differences between genotyping 

methods and marker sets for all above‐mentioned statistics were tested using the t-tests as 

implemented in R v. 3.5.1 (R Core Team, 2018). 

To evaluate genetic structure between species and populations without assumptions of Hardy–

Weinberg Equilibrium (HWE), absolute genetic distances between individuals were calculated 

and the resulting matrix was used in a principal coordinates analyses (PCoA) as it is implemented 

in GenAlEx. This analysis was performed first using the complete dataset and then using only 

individuals from each species. All genetic structure analyses were done using both length and 

sequence information to test if the additional SNP information contributed to a more detailed 

genetic diversity pattern. 

Sample clustering was evaluated using STRUCTURE v. 2.3.4 (Hubisz, Falush, Stephens, & 

Pritchard, 2009). This was done for datasets consisting of all samples, only E. europaeus and only 
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E. roumanicus. To evaluate if genetic structure was affected by the use of species‐specific markers, 

STRUCTURE analyses were performed using either markers specifically designed for E. 

europaeus or E. roumanicus. Both length‐ and sequence‐based genotyping was used for these 

analyses. STRUCTURE was run using 15 independent replicates for 500,000 generations after a 

burn‐in period of 100,000. The admixture model and the allele frequencies among samples were 

considered to be correlated. K‐values between 1 and 10 were tested, and the K‐value was 

evaluated through the Delta‐K method implemented in the online program Structure Harvester, 

available at http://taylor0.biology.ucla.edu/structureHarvester/ (Earl, 2012). Replicates per 

K‐value were summarized using the online pipeline Clumpak (Kopelman, Mayzel, Jakobsson, 

Rosenberg, & Mayrose, 2015) available at http://clumpak.tau.ac.il/. To evaluate possible 

isolation by distance, a Mantel test was performed in GenAlEx comparing geographical and 

genetic distance matrices among individuals using the data produced from sequence information. 

2.4 Results 

2.4.1 Maker development 

For marker development, the MiSeq runs resulted in 2,201,005 and 1,348,477 paired reads for E. 

roumanicus and E. europaeus, respectively. After quality control and merging, a total of 1,464,370 

and 716,091 reads were available for microsatellite motif screening. In total, 70,704 and 8,677 

microsatellite-containing sequences passed our criteria for E. roumanicus and E. europaeus, 

respectively. From these, there were 32,466 dinucleotide, 9,966 trinucleotide, 26,249 

tetranucleotide, and 2,023 pentanucleotide repeats for E. roumanicus. For E. europaeus, there were 

4,175 dinucleotide,730 trinucleotide, 3,539 tetranucleotide, and 233 pentanucleotide repeats. In 

total, 37 primers were designed for E. roumanicus and 34 for E. europaeus. Of these, 12 failed in the 

initial amplification step. The remaining primers are listed in Supplementary Table 2.2. 

2.4.2 Sequence analysis and genotyping 

The three runs resulted in a total of 196,165, 842,591 and 1,790,852 paired reads, respectively. 

After quality control, paired read merging and primer demultiplex, 4,232,682 reads remained for 

all three runs. For each marker, the number of sequences varied between 268 and 446,616 per 

marker and between 12,664 and 136,247 per sample. The marker with the lowest number of 

sequences was W25_TTA and the one with the highest was W31_GA. Only 10 markers were not 

retained after the multiplex step: E25_TAC, E6_AAT, E32_ATCT, W20_TAGA, W24_ATA, 

W25_TTA, W26_TAT, W27_ATA, W3_AAAGA, and W5_AAAAT. These markers were not 
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considered further despite based on singleplex reaction tests, they would have been able to be 

measured in less complex multiplex reactions. 

Even though most markers were able to be amplified in both species, variability in the species 

from which they were not derived (non‐target species) was lower for many markers 

(Supplementary Table 2.4). In five markers, the motif was missing in the non‐target species, and 

in three additional markers, the motif was interrupted and was less variable. In a few cases, alleles 

were fixed. In only a single case was a marker derived from E. roumanicus fixed in E. roumanicus 

but variable in E. europaeus. We excluded markers that were unable to produce genotypes for 

most samples (missing data >50%). This resulted in a total of 42 markers for further analysis. 

When only one species was analysed after excluding markers based on missing data, only 42 

markers remained for E. europaeus and 41 for E. roumanicus. Samples stemming from mouth 

swabs and tissue material contained on average 31% and 16% missing data, respectively. This 

corresponded to significantly higher missing data for mouth swabs samples when compared to 

tissue samples. 

2.4.3 Marker variability 

Markers had between 1 and 23 alleles when only length polymorphisms were considered 

(Supplementary Table 2.4; Table 2.1). When sequence information was included these numbers 

varied between 1 and 50 alleles. This corresponded to an increase in the number of singletons 

(72 for length and 196 for sequence information) and alleles shared among 2–10 individuals 

(Length = 181, Sequence = 327; Figure 2.3). There was no change in the number of alleles 

shared among 11 and 20 samples (86), while the allele call based on sequence information 

contributed to a decrease in the number of alleles shared among 21 or more individuals (Figure 

2.3). One marker was monomorphic for the complete dataset including SNPs (E24_GCA) and 

two more were monomorphic in E. roumanicus (W15_ATAA) or E. europaeus (W13_TTTA). 

Considering length information and excluding the monomorphic markers, HO varied between 

0.09 and 1.00, HE between 0.25 and 0.94, and PIC between 0.23 and 0.93. Including sequence 

information, HO varied between 0.12 and 1.00, HE between 0.49 and 0.97, and PIC between 

0.46 and 0.96. The number of alleles within E. europaeus, excluding monomorphic markers, varied 

between 2 and 17 for length information and between 3 and 28 for sequence information. For 

the allele length dataset, HO varied between 0 and 1.00, HE between 0.05 and 0.89, and PIC 

between 0.05 and 0.87. When considering sequence information, the same values varied between 

0.03 and 1, 0.07 and 0.94, and 0.11 and 0.94, respectively. For E. roumanicus, the number of 

alleles, excluding monomorphic markers, varied between 2 and 16 for length information and 
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between 3 and 34 for sequence information. For the allele length dataset, HO varied between 0 

and 1.00, HE between 0.07 and 0.92, and PIC between 0.07 and 0.91. When considering 

sequence information, the same values varied between 0 and 1, 0.11 and 0.96, and 0.07 and 0.93, 

respectively. 



Application of an SSR-GBS marker system on an investigation of European Hedgehog 
species and their hybrid zone dynamics 

49 

Table 2.1: Average, across used loci, of amplification success shown as percentage of missing data and average 
variability measures: Na—number of alleles, HO—observed heterozygosity, HE—expected heterozygosity, and PIC—
polymorphism information content. Values in brackets correspond to minimum and maximum values. Values 
calculated based on sequence information are represented by the superscript ‘S’ while the ones based on length 
information by ‘L’. Statistics were calculated based on different markers and samples sets 

Statistics Marker set All samples E. europaeus  E. roumanicus  

% missing 

All 15.48 (0–47.56) 14.75 (0–85.37) 16.2 (0–85.37) 

E. europaeus  15.39 (0–47.56) 18.01 (0–85.37) 12.76 (0–60.98) 

E. roumanicus  15.62 (0–45.12) 9.45 (0–51.22) 21.8 (0–85.37) 

 

All 9.98 (2–23) 7.12 (2–17) 7.1 (2–16) 

E. europaeus  8.96 (3–19) 6.38 (2–13) 6.65 (3–13) 

E. roumanicus  11.63 (2–23) 8.31 (2–17) 7.81 (2–16) 

 

All 16.83 (4–50) 10.45 (3–28) 10.38 (3–34) 

E. europaeus  15.58 (5–49) 9.54 (3–28) 10.15 (3–25) 

E. roumanicus  18.88 (4–50) 11.94 (3–23) 10.75 (4–34) 

 

All 0.45 (0.09–1) 0.44 (0–1) 0.46 (0–1) 

E. europaeus  0.39 (0.09–0.97) 0.35 (0–0.97) 0.43 (0–0.98) 

E. roumanicus  0.55 (0.12–1) 0.59 (0.1–1) 0.51 (0.1–1) 

 

All 0.52 (0.12–1) 0.51 (0.03–1) 0.51 (0–1) 

E. europaeus  0.47 (0.12–0.99) 0.44 (0.03–0.97) 0.49 (0–1) 

E. roumanicus  0.59 (0.12–1) 0.61 (0.1–1) 0.55 (0.12–1) 

 

All 0.74 (0.25–0.94) 0.6 (0.05–0.89) 0.64 (0.09–0.92) 

E. europaeus  0.72 (0.47–0.92) 0.51 (0.05–0.89) 0.64 (0.09–0.9) 

E. roumanicus  0.76 (0.25–0.94) 0.74 (0.31–0.89) 0.65 (0.13–0.92) 

 

All 0.81 (0.49–0.97) 0.68 (0.07–0.94) 0.71 (0.11–0.96) 

E. europaeus  0.8 (0.57–0.95) 0.62 (0.07–0.94) 0.71 (0.11–0.94) 

E. roumanicus  0.83 (0.49–0.97) 0.78 (0.41–0.94) 0.71 (0.16–0.96) 

PICL 

All 0.7 (0.23–0.93) 0.56 (0.05–0.87) 0.6 (0.09–0.91) 

E. europaeus  0.68 (0.37–0.91) 0.48 (0.05–0.87) 0.59 (0.09–0.86) 

E. roumanicus  0.74 (0.23–0.93) 0.7 (0.29–0.87) 0.61 (0.12–0.91) 

PICS 

All 0.78 (0.46–0.96) 0.67 (0.11–0.94) 0.64 (0.07–0.93) 

E. europaeus  0.77 (0.48–0.94) 0.67 (0.11–0.9) 0.58 (0.07–0.93) 

E. roumanicus  0.81 (0.46–0.96) 0.67 (0.16–0.94) 0.74 (0.38–0.92) 
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Figure 2.3: Number of alleles shared among individuals shown as the number of alleles (y‐axis) in dependence to the 

number individuals that share one allele (x‐axis). White and grey bars represent alleles called using sequence length 
information, respectively. The comparison includes the final 41 markers for all 82 individuals 

2.4.4 Comparison between genotyping approaches and species-specific 

primers 

Variability per marker was higher when sequence information was considered for allele calling 

(Figure 2.4). This difference was significant (p < 0.05) for all comparisons using Na and for HE 

and PIC when all samples were considered. Distance among individuals was calculated based on 

the average number of different alleles per marker between and within each species. Distance 

between species varied between 0.95 and 3.32 for length information and between 1.05 and 3.32 

for sequence information. Among E. europaeus samples, distance ranged from 0.78 to 3.17 for 

length information and from 0.80 and 3.27 for sequence information. Among E. roumanicus, it 

varied between 0.32 to 3.10 for length information and between 0.41 and 3.22 for sequence 

information. As shown in Figure 2.5, distance was higher between species while no differences 

were found within species. Distance was also significantly higher (p < 0.05) when sequence 

information was considered (Figure 2.5). 
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Figure 2.4: Boxplots describing variability and genetic diversity measurements per marker. Left panel using different 
allele calling approaches: sequence length (L) and sequence information (S). Right panel using different markers sets: 

E. europaeus‐specific primers (E) and E. roumanicus species primers (R). p‐Values correspond to t-tests comparing 
differences in averages between genotyping methods and markers sets 
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Figure 2.5: Boxplots describing pairwise distance between samples. Left panel using different allele calling 
approaches: sequence length (L) and sequence information (S). Right panel using different markers sets: E. 

europaeus‐specific primers (E) and E. roumanicus 

Genetic diversity and marker variability were not clearly different between the two marker sets 

used, although the set using markers specific for E. europaeus were slightly more diverse (Figure 

2.4). This was only significant when only E. europaeus samples were used. When the same 

comparison was performed using genetic distance among individuals, one of the marker sets 

recovered significantly higher distances than the others (Figure 2.5), for all test. E. 

roumanicus‐specific markers resulted in higher distances between species (Figure 2.5). Within 

species, E. europaeus markers contributed to a slightly higher distance among E. europaeus 

individuals. No difference between the marker sets is observed for E. roumanicus among the 

samples. 

2.4.5 Genetic structure 

When all individuals from both species were considered, the PCoA analysis resulted in two clear 

groups corresponding to the two species (Figure 2.6). There was one E. roumanicus individual 

from Linz (2016169) that appears in the E. europaeus group and one E. europaeus individual from 

east Linz (2014581) that groups together with the E. roumanicus samples. The PCoA also shows 

some samples that are in intermediate positions between both groups: one E. europaeus from Linz 

(2012159) and one E. roumanicus from the southern region of Linz (2016169). When considering 

only E. europaeus individuals, the PCoA showed three clear groups: one comprised by the samples 

collected by the Innsbruck shelter, another by the samples collected by the Vorarlberg shelter, 

and a last one containing the remaining samples. When considering only E. roumanicus 

individuals, two larger groups are found reflecting a separation between individuals from the 

northwestern and southeastern regions of the sampling: southeast being composed of the 

samples collected in the Klagenfurt shelter, Burgenland, Macedonia, Hungary, and Croatia; and 
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the northwest containing the remaining samples. Samples from the easternmost region of Austria 

(Neusiedlersee) seem to be between these two groups. 

 

Figure 2.6: Principal coordinates analyses from matrix with genotypes called based on sequence information. Top: 
PCoA with complete dataset. Middle: PCoA with only E. europaeus samples. Bottom: PCoA with E. roumanicus. In 
the analysis for all samples, the samples; errata Error: E. europeaus Correction: E. europaeus 
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STRUCTURE analyses were congruent with the PCoA results. When both species were 

considered, the optimal K‐value was two (Figure 2.7). For this analysis, both species were clearly 

separated into two clusters, with four samples showing either some degree of admixture or an 

opposite assignment to their morphological classification. These were the same individuals 

misidentified or showing signals of admixture in the PCoA analysis. The STRUCTURE analyses 

with only E. europaeus and E. roumanicus samples resulted in best K‐values of 3 and 5, respectively. 

Nevertheless, we also considered lower values of K to see if there was any congruence between 

the hierarchy cluster divisions and geographical distribution. For E. europaeus, in the K = 2 

analysis, samples from the Vorarlberg shelter and Berlin were separated from the remaining 

ones. For K = 3, the additional cluster contains only the individuals from the shelter in 

Innsbruck. Considering the E. roumanicus dataset, for K = 2, one of the clusters is more prevalent 

in southern Austria (Klagenfurt and Burgenland) and the other countries while the other in the 

west (Linz region). The localities geographically between these groups (Vienna and Neusidlersee) 

show some degree of admixture. This pattern corresponding to a gradual transition of a cluster 

from southeast to another in the northeast is congruent with a scenario of isolation by distance. 

For the higher values of K, the following subgroups are observed: for K = 3, samples from 

Vienna are separated from the rest; for K = 4, the shelter from Klagenfurt has its own cluster; 

and for K = 5, it is possible to observe a new cluster comprising some samples from 

Neusiedlersee, the sample from Burgenland, and one individual from West Linz. For both 

species, although significant, there was a small correlation between geographical and genetic 

distance (Supplementary Figure 2.1) indicating a slight signal of isolation by distance. This 

correlation was more pronounced for E. europaeus (r = 0.35) then E. roumanicus (r = 0.25). 



Application of an SSR-GBS marker system on an investigation of European Hedgehog 
species and their hybrid zone dynamics 

55 

 
Figure 2.7: Structure analysis for all three datasets (All samples, only E. europaeus, only E. roumanicus) considering 
all markers and alleles called based on sequence information. Only results from K = 2 until the optimum are shown 

Clustering results obtained with STRUCTURE, differed between the two allele calling 

approaches in particular for the E. europaeus dataset where the samples from Bavaria and Czech 

Republic had different assignments (Supplementary Figure 2.2). Overall, allele calling based on 

sequence information showed a lower number of individuals with mixed assignment. When the 

same analysis was used to test the impact of using species‐specific primers, this resulted in a 

slightly clearer assignment for E. europaeus (Supplementary Figure 2.3), while for the E. roumanicus 

dataset the marker set played no role in recovering a clearer genetic structure pattern. 

2.5 Discussion 

In this study, we present a set of SSR markers that can be used for genotyping by sequencing of 

amplicons. The SSR‐GBS approach provides a significant improvement over traditional 

fingerprinting methods, in particular because of three factors. First, laboratory methods are 

highly simplified, primarily due to the ability to utilize multiplexing PCR to a higher degree than 

when using fragment length analysis. Second, the ability to not only capture length 

polymorphisms but also SNPs results in more information for allele definition when compared 

to electrophoresis‐based methods, resulting in higher resolution with the SSR‐GBS approach. 

Third, the detection of alleles as sequences decreases ambiguity when allele calls are reproduced. 
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This facilitates the concatenation of existing with new data and the combination of different 

datasets. In the following sections, we review these potential improvements, beginning with the 

procedure details and concluding with a discussion of the prospects of compiling large datasets 

for genotype analyses in hedgehogs. In addition, although similar whole‐genome genotyping 

without available reference sequences has been previously described (Andrews et al., 2016), we 

highlight the potential of the current method.  

2.5.1 Marker specificity 

In this study, we developed primers for two closely related species, which allows for the 

evaluation of cross‐amplification capacity. We started with primers for E. roumanicus, because for 

this species until now no microsatellites had been developed, there exist marker sets for 

E. europaeus. When testing cross‐species amplification, we not only found null alleles, as expected 

(Turini et al., 2014), but also discovered loci where the repeat unit was deleted in E. europaeus or 

invariable because the allele was fixed where the repeat motif was interrupted by a SNP, and 

thus, variability could no longer be measured. These markers gave a positive signal after 

amplification, but differ in evolutionary history and variability between and within species. This 

confirmed the need to develop additional markers for E. europaeus.  

Marker selection based on their variation, their source material, and their amplification success in 

different species results in ascertainment bias (Brandström & Ellegren, 2008). It is common 

practice in microsatellite genotyping to maximize variability, and this may result in an 

overestimation of genetic diversity or high prevalence of null alleles (Ellegren, 2000; Huang et al., 

2002; Weber & Wong, 1993). This leads to increased information content despite limited 

numbers of markers. When using GBS, the inclusion of additional markers does not increase the 

workload making this of less importance/unnecessary. Therefore, markers were not filtered 

based on variability. Developing marker sets based on several species minimizes ascertainment 

bias within each species. When biases related to the species of the marker set origin were 

evaluated, few differences were found in the results of genetic diversity; however, this was not 

the case for distance between samples and species. E. roumanicus‐specific markers resulted in 

higher differentiation between species while those specific to E. europaeus resulted in a higher 

differentiation among individuals of the same species. This difference in performance between 

marker sets further indicate that using only one marker set could have contributed to the 

presence of variability biases in our dataset.  
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2.5.2 Better resolution 

We showed that allele call considering complete sequence information (both length and SNPs) 

leads to higher values for marker variability, information content, and distance between species. 

This improvement was most likely related to a higher number of alleles recovered with sequence 

information. In most cases, sequence allele definition led to an increased number of alleles and 

PIC, which increased anywhere from zero to 267 % depending on the locus. Part of the 

improvement on the genetic structure may be due to the decrease in the amount of homoplasy, 

which is difficult to estimate with length polymorphism information alone. This was shown by 

the increase in singleton alleles when sequence information was used, which resulted in the 

division into multiple alleles of length polymorphism alleles with the same length but different 

nucleotide composition. However, the definition of alleles according to sequence information 

did not change much the overall structure assignment, likely as a consequence of the high 

number of markers used. 

The decrease in homoplasy and the large number of markers can also explain the lack of 

significantly higher genetic diversity using the allele calling approach for some of the 

comparisons made. This was the case for HO for all tests and for HE and PIC at an intraspecific 

level. Homoplasy is more likely to be found when comparing both species, so it makes sense that 

the genetic diversity results were significantly higher when all samples were included but not 

necessarily within species or populations. Given the high number of markers, most of the 

variation was already recovered using the length approach. Within one population, individuals 

are more closely related; thus, it is less likely to find homoplasy. Consequently, with 

sequence‐based genotyping we did not find a significantly higher genetic diversity at this level.  

Studies using microsatellites on hedgehogs are currently based on two sets of markers that had 

been developed by Becher and Griffiths (1997) and by Henderson, Becher, Doncaster, and 

Maclean (2000) comprising a total of 11 loci. These markers were, in some cases, able to 

differentiate genetic clusters on a rather small spatial scale, which in other studies was not as 

pronounced (i.e., Braaker et al., 2017). For example, compared to Braaker et al. (2017), which 

found between 2 and 15 alleles with an average of 8, our study obtained a similar number of 

alleles while using only E. europaeus with species‐specific markers and length information 

(between 2 and 17 with an average of 8). These numbers increased with sequence information, 

ranging between 3 and 23 with an average of 11.5. We included all markers showing an 

amplification product, despite possibly only being informative within one species, because they 

can be useful for intraspecific comparisons and other similar questions. For intraspecific 



Application of an SSR-GBS marker system on an investigation of European Hedgehog 
species and their hybrid zone dynamics 

58 

comparisons, we could concentrate on markers with high PIC and complement this with new 

loci. The high number of alleles found in some of our markers, for example, the markers W12 

(50 alleles) and E23 (49 alleles), may be a consequence of gene duplication or scoring errors. 

Despite not finding an effect in the results, we recommend excluding them in further studies.  

2.5.3 Simplification of the procedure 

The laboratory methods are based on the amplicon sequencing approach suggested by Illumina 

and widely used for DNA bar coding (Cruaud, Rasplus, Rodriguez, & Cruaud, 2017; Shokralla et 

al., 2015). This approach allows a higher level of multiplexing than traditional methods, where 

typically up to four markers are combined in one PCR. This high number requires optimization 

which is only cost‐effective in studies with a large number of samples. In the current 

experiments, we routinely multiplexed 10 markers; however, in one experiment up to 30 markers 

were successfully multiplexed in one reaction. In our previous work, based on the asymmetric 

PCR approach (Curto et al., 2015, 2013), we used a multiplex of four markers in an 

electrophoresis genotyping approach, with between 4 and 5 PCRs per sample and the same 

number of ABI electrophoreses. In comparison, with the system presented here, we can reach 

this amount with one or two PCRs and comparable primer costs.  

2.5.4 Better reproducibility and easier analysis 

The main advantage of using SSR‐GBS is the better reproducibility of the data (de Barba et al., 

2017). In traditional electrophoresis‐based determinations of SSR alleles, mobility of DNA 

fragments in the polyacrylamide matrix (used in most applications) is measured against an 

internal dye‐labeled size standard. The size of the allele is then called in comparison to the 

standard fragment sizes. The fragments do not always migrate through the capillary the same 

way, creating variation between runs, capillary sets, and laboratories (Davidson & Chiba, 2003; 

Fernando, Evans, Morales, & Melnick, 2001). In our experience, within one project different 

plates might differ by one or two base in size estimates, which requires manual control of the 

range within which each allele occurs. Using tetra‐ or pentanucleotide repeats, as frequently done 

with vertebrates, this is generally not a problem, but with di‐ and trinucleotides this effect is 

more problematic due to the length ranges of possible alleles (‘bins’) which are narrower for 

these motifs (Ginot, Bordelais, Nguyen, & Gyapay, 1996; Litt, Hauge, & Sharma, 1993). 

Additionally, Taq polymerase adds a single nucleotide to the 3′ end of the PCR product, most 

frequently Adenine (Brownstein, Carpten, & Smith, 1996; Magnuson et al., 1996). As a frequent 

artefact which is observed depending on PCR performance, this cannot be omitted and an allele 

may be divided into two peaks that differ by one base. The so‐called ‘plus A peak’ artefact is a 
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combination of this amplification artefact and variation of fragment and size standard migration 

in the electrical field. Ultimately, it can lead to errors of two to three base pairs, which can be 

further increased depending on the fluorescent dye used. The necessity for including samples of 

known genotype as a standard to verify allele identity is therefore common practice. As a result, 

the use of SNPs over SSR markers for high‐interest species data collected by multiple 

laboratories has been suggested (e.g., for wolfs by Kraus et al., 2015).  

In SSR‐GBS, the ‘plus A peak’ artefact is no longer relevant as the allele definition is not 

dependent on positions upstream of the primer binding sites, and the ambiguity that stems from 

electrophoresis and the addition of extra bases by the enzyme is not applicable when the 

fragment length is determined by the sequence composition. However, slippage artefacts may 

still occur with SSR‐GBS because of its’ dependency on PCR and all of the optimization 

procedures (Ellegren, 2004). The method is, in this respect, comparable to electrophoresis‐based 

methods, and therefore, ambiguities remain, especially for dinucleotide motifs.  

Previous studies used primers already containing the index for sample identification and included 

only tetra‐ and pentanucleotide repeats to reduce PCR complexity and thus artefacts (de Barba et 

al., 2017). The high costs associated with this can be justified considering certain model systems 

such as Ursus arctus, a large carnivore with a high public interest, but not for small scale, 

non‐model organism research, for which our method would be more appropriate. To gain 

experience of the method's properties, we decided to include dinucleotide repeats, which are 

frequently used in other systems, in particular for plants (Lagercrantz, Ellegren, & Andersson, 

1993; Tóth, Gáspári, & Jurka, 2000). Dinucleotides, compared to tetra‐ and pentanucleotides, 

have a higher probability of producing stutter bands, which are problematic for allele 

determination (Ginot et al., 1996; Litt et al., 1993). Nevertheless, in most cases, this limitation 

can be overcome during the allele call procedure.  

In the dataset presented here, allele calling was not performed completely automatically. De 

Barba et al. (2017) presented a pipeline for automated allele calling of sequence‐based alleles (i.e., 

including SNPs). However, the procedure suggested did not work for dinucleotides, so a slightly 

different approach was chosen. First, we used the length polymorphisms to determine the SSR 

allele, that is the most likely allele definition according to length, and thus the repeat unit 

number. In a second step, we investigated whether the SSR allele contained additional single 

nucleotide polymorphisms or not. Similar to traditional electrophoresis‐based analysis, this 

approach is very accurate for tetra‐ and pentanucleotide repeats, but has a higher error rate with 
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dinucleotides. Here, the difficulty in determining alleles when stutter bands of one allele overlay 

another still exists because the determination of the SSR allele is performed according to length 

frequency distribution and does not differ in this respect from traditional analyses. When both 

alleles differ on base composition, this overlay applies also to SNPs, which means that an SSR 

allele overlaid by a stutter band can show a nucleotide polymorphism as an artefact. Here, the 

state of the other allele must be taken into consideration. The approach of de Barba et al. (2017) 

is also unable to overcome this limitation since it divides alleles based on SNPs in the flaking 

regions first. The program HipSTR (Willems et al., 2017) can deal with the stutter effect by using 

a parametric approach. It defines candidate alleles based on a stutter model and uses them as 

reference to align the reads redefining new candidate alleles. This process is repeated until the 

most likely alignment is obtained. Since this approach is based on alignment quality, it is likely to 

be negatively affected by erroneous phasing between SNP variations in the flanking regions and 

the repetition motif. As mentioned above, this can be caused by the overlay of stutter bands and 

the formation of chimeric sequences in the PCR. These artefacts result in sequences containing 

the repetition motif of one allele and the SNP variant of the other. HipSTR does not have a 

filtering step where these error sources are considered, and thus, all sequences stemming from 

PCR artefacts are included during allele call. This can potentially contribute to a lower likelihood 

of alignments of the correct alleles. In our method, because we filter out reads first based on 

length, with a manual control step, a lot sources of error are already excluded, decreasing the 

ambiguity of the final allele calling. There are alternative approaches based on the assembly of 

the amplicon reads. Šarhanová, Pfanzelt, Brandt, Himmelbach, and Blattner (2018) applied an 

alternative approach based on read de novo assembly. Nevertheless, a manual control step was 

added to account for the assembly of two alleles filtering noise. Thus, at this moment, a manual 

curation step is still necessary in the genotyping of di‐ and trinucleotides repeats.  

The high reproducibility that can be achieved in determining sequence alleles also allows for the 

easy creation of large data collections over multiple laboratories and projects. There are several 

examples where SSR variation is used for wildlife monitoring; however, the technical difficulties 

restrict this to species for which there is considerable conservation concern (Godinho et al., 

2011), conflict species (De Barba et al., 2010), or species with large commercial interest 

(Schenekar & Weiss, 2017; Tibihika, Waidbacher et al., 2018). With similar approaches to the 

SSR‐GBS system, this can be adapted for non‐model species and specific scientific questions. 

Our interest in hedgehogs resulted from a citizen science project, where occurrence data had 

been collected in private gardens together with that from primary school students and the 

general public. The prospect of including methods that allow for investigation of a variety of 
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samples, using hair, faeces, or mouth swabs is very interesting and could be achieved by the 

SSR‐GBS system presented here. In our case, although mouth swabs showed higher missing data 

than tissue samples this did not affect the final results. This was a consequence of a lower 

number of reads for these samples. The potential of SSR‐GBS can be compared to phylogenetic 

data collections, where sequences can very easily be incorporated into existing alignments and 

large meta‐analyses are frequent (Adams, 2008). It therefore constitutes a tool that can be 

implemented in long‐term screening projects.  

2.5.5 Phylogeographic implications 

Two of the included individuals were detected as potential hybrids. Using a dense sampling from 

the contact zone in the Check Republic, Bolfíková and Hulva (2012) did not find any evidence of 

hybridization among the two hedgehog species. However, hybridization among these species 

would be congruent with the high incidence of hybrid zones in central Europe (Hewitt, 2001). 

The current rarity of hybridization events can be a remnant of a hybrid zone dynamics. It is likely 

that every time these species contacted after a glacial period a hybrid zone was established. With 

time, these species may have become more reproductively isolated to a point that the hybrid 

zone either only exists in some areas or it is very narrow. This hypothesis can only be tested by 

characterizing hybridization occurrence and frequency across the contact zone.  

Overall there was a weak correlation between genetic structure and geographical distance, which 

may be a consequence of barrier to gene flow, promoted by natural and anthropogenic factors. 

For example, there was a separation among E. roumanicus individuals from the south and north of 

the alps indicating that these mountains may work as a natural barrier. Additionally, human 

structures such as roads may have contributed to some structure found at the local level (Braaker 

et al., 2017). This has been reported to be the case for E. europaeus populations in England 

(Becher and Griffiths 1998). The potential role of natural anthropogenic structures on hedgehog 

populations from central Europe needs to be better investigated with a denser sampling in order 

to account for small scale genetic structure as well.  

Shelters’ practices may also influence the distribution of genetic variability. This happens when 

the source of the individuals are unknown and they are consequently not released in areas of 

their origin. This may contribute to outbreeding depression and promote hybridization 

(Edmands, 2007). In the current study, the individuals from the shelters are genetically 

homogeneous, so as long as the shelter does not release individuals outside the area of activity 

the gene pool of natural populations should not be affected. Given the low amount of shelters 
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and limited sampling, it is still impossible to make any conclusion in this matter and we are 

currently in the process of including a larger sampling from multiple shelters spread throughout 

Central Europe.  

2.5.6 Importance of the museum collections 

The improvement of replicability associated with the SSR‐GBS approach may allow several 

long‐term studies using newly collected and museum samples. For our study, we were able to 

utilize a large collection of hedgehog specimens preserved in ethanol at the Biologiezentrum in 

Linz. This emphasizes the usefulness of the storage of multiple samples, especially from species 

that attract public attention, by public collections. In the Biologiezentrum Linz, this was achieved 

by combining several private collections with staff efforts, from which studies like this one 

benefit. This also demonstrates how desirable it is to store multiple samples per species even if 

space problems and considerations of general funds might suggest otherwise. This is especially 

true when, like in the present dataset, potential hybrids are found and the determination of 

morphological characters may be critical to complement the molecular data. 
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3.1 Abstract 

1. Bio-logging is an essential tool for the investigation of behaviour, ecology and physiology 

of wildlife. This burgeoning field enables the improvement of population monitoring and 

conservation efforts, particularly for small, elusive animals where data collection is 

difficult. Device attachment usually requires species-specific solutions to ensure that data 

loggers exert minimal influence on the animal’s behaviour and physiology, and ensure 

high reliability of data capture. External features or peculiar body shapes often make 

securing devices difficult for long-term monitoring, as in the case with small spiny 

mammals.  

2. Here, we present a method that enables high-resolution, long-term investigations of 

European hedgehogs (Erinaceus europaeus) via GPS and acceleration loggers. We collected 

data from 17 wild hedgehogs with devices attached between 9 and 42 days. 

3. Our results showed that hedgehogs behaved naturally; as individuals curled-up, moved 

through dense vegetation, slipped under fences and built regular day nests without any 

indication of impediment.  

4. Our novel method makes it possible to not only attach high-precision devices for 

substantially longer than previous efforts, but enables detachment and reattachment of 

devices to the same individual. This makes it possible to quickly respond to unforeseen 

events and exchange devices, and overcomes the issue of short battery life common to 

many lightweight loggers.  
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3.2 Introduction 

A thorough knowledge of the ecology, behaviour and physiology of species under free-ranging 

conditions is essential to understand their environmental needs, life-history strategies and thus is 

the crucial basis for their protection and conservation (Wilson & McMahon, 2006; Kays, 

Crofoot, Jetz, & Wikelski, 2015; LaPoint, Balkenhol, Hale, Sadler, & van der Ree, 2015). 

Research on movement patterns, habitat use, interspecies and intraspecies interactions, foraging 

and reproductive behaviour is essential for effective conservation management (Graham, 

Douglas-Hamilton, Adams, & Lee, 2009, Fraser et al. 2018). Such research, benefits from high 

resolution, long term data collection and can help develop effective nature reserves (Afonso, 

Fontes, Holland, & Santos, 2008), solve human-wildlife conflicts (Voigt et al., 2014) and improve 

captive breeding to ensure successful re-introduction of endangered species (Kaczensky et al., 

2011). This field of ‘big-data animal tracking’ is advancing with the development of lightweight 

bio-logging devices capable of combining accelerometer, VHF and/or GPS (Kays et al. 2015).  

The results of studies on behaviour and physiology of wildlife under controlled conditions can 

often not be reproduced under natural conditions, making studies on free-ranging animals in 

their native habitat crucial (Gattermann et al., 2008). Unfortunately, field studies can be difficult 

as observer presence is known to influence animal behaviour; however subtle the observation 

conditions might be (Schneirla, 1950; Scheibe & Gromann, 2006; Cagnacci, Boitani, Powell, & 

Boyce, 2010; Crofoot, Lambert, Kays, & Wikelski, 2010; Shamoun-Baranes et al., 2012; Kays et 

al., 2015). Innovative bio-telemetry/bio-logging technologies are being applied to an ever-

increasing range of taxa (from insects to mammals), spatial scales (from habitat patch to 

continental scale), and habitats (from coral reefs to rainforests) enabling us to gain a deeper 

insight into the natural behaviour and physiology of species without the need for observer 

presence (Wilson & McMahon, 2006; Cagnacci et al., 2010; Kays et al., 2015). Yet, these devices 

may also change the behaviour of the animals to which they are attached or may influence their 

chance of survival, thereby also biasing results (e.g. Hofer & East, 1998). In order to reduce such 

biases, the data logger, attachment and handling procedure should all minimise disturbance of 

the study animals (Hofer & East, 1998; Pearl, 2000; Barron, Brawn, & Weatherhead, 2010; 

Collins, Petersen, Carr, & Pielstick, 2014; S. P. Vandenabeele et al., 2015). Therefore devices 

should be designed in a species-specific manner. Such a design needs to take into account the 

mass, size, shape and material of the device and the method of its attachment and potential for 
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detachment/reattachment (Culik, Bannasch, & Wilson, 1994; Bridge et al., 2011; Vandenabeele, 

Wilson, & Wikelski, 2013; Kays et al., 2015).  

Concerning the mass of the device, it is recommended that a complete radio transmitter should 

not exceed 2–5 % of body mass (Hofer & East, 1998; Kenward, 2001; Sikes, Gannon, & Animal 

Care and Use Committee, 2011). Despite the wide acceptance of the ‘percentage rule’, a meta-

analysis of bird behavioural studies found little evidence that the impact of carrying the device 

was proportional to its weight (Barron et al., 2010). In contrast, in a study of equids, Brooks, 

Bonyongo and Harris (2008) showed that, even within the accepted norms, small differences in 

collar mass can significantly affect specific behaviours. Regardless, both studies found that 

attachment position and collar fit impacted behaviours significantly (Brooks, Bonyongo and 

Harris, 2008; Barron et al., 2010). A key issue is that battery mass and size are the driving factors 

of device total mass. Together they determine battery life and thus the duration of data 

collection. The trade-off between light mass and long duration is particularly challenging when 

the study species are small, such as many lizards, birds or small mammals (Warner, Thomas, & 

Shine, 2006; Warwick, Morris, & Walker, 2006; Doody, Roe, Mayes, & Ishiyama, 2009; Flesch, 

Duncan, Pascoe, & Mulley, 2009; Dervo et al., 2010; Rautio, 2015).  

While battery life and device size pose substantial hurdles for study design, data retrieval is by far 

the most important aspect of any study. The current methods for device attachment dictate that 

devices fall off upon glue deterioration and/or after the growth of fur or feathers or the 

shedding of spines. Yet this approach may not always be viable and animal recapture and manual 

device removal is also commonly necessary. As such, the swift and easy removal and 

reattachment of devices enables data download, battery exchange and the potential for 

prolongation of data collection. While solutions to battery life via solar-powered devices have 

enabled long term data collection in diurnal species, nocturnal animals are still considered elusive 

and bio-logging study design must be approached differently.  

European hedgehogs (Erinaceus europaeus) are a small, nocturnal mammal (ranging seasonally 

from 600 to 1500g) with a highly flexible body covered in spines. These spines are made of 

keratin and are repeatedly shed during a hedgehog’s lifetime. Individuals hide and forage in dense 

vegetation and have a number of interesting behaviours such as self-anointing, curling up, 

hibernation and regular nest building (Reeve, 1994; Hof, 2009; Reeve, Bowen, & Gurnell, 2015). 

Because of these characteristics and their unusual body shape, standard collars cannot be used 

and other methods of attachment are often unsuitable. For a more comprehensive understanding 
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of hedgehog behaviour longer-term data sets are extremely important and contingent on 

appropriate device selection and attachment. 

Here we present a modified method of device attachment to hedgehogs that does not hinder the 

animal’s movements and can be easily removed and replaced, thereby solving the trade-off 

between small device size and the collection of long-term high-resolution data.  

3.3 Methods 

3.3.1 Study area & animals 

Fieldwork was conducted from August to September 2016 in a study area of 16 ha within an 

urban park of 88.2 ha, in southeast Berlin, Germany (52.48846°N, 13.46974°E) as part of an 

ongoing project. The park is open to the general public and comprises short grass, variable shrub 

density, gravel foot paths, a playground and a monument site. The park is surrounded by urban 

pedestrian areas, tarmacked streets and parking areas to the east and south, and is bounded by 

the river Spree to the north and by a railway embankment to the west. The park was open to the 

general public throughout day and night.  

When traversing this urban park, hedgehogs may have to cross streets, slip through fences or 

climb up a railway embankment. In preparation of this study, three night surveys to find 

hedgehogs were carried out at least one hour after sunset to find the animals by spotlighting 

(P14.2, LED Lenser, Solingen, Germany). Every hedgehog was marked with five labelled shrink 

tubes on the spines (Mori et al., 2015). The tubes were labelled with a number starting with 1 to 

make it possible to identify them during recapture (N. J. Reeve, pers. comm. 2016).  

3.3.2 Backpack attachment 

The complete backpack comprised three components: the back plate, the data logger (GPS and 

accelerometer) and a very high frequency (VHF) transmitter (Figure 3.1 A).  

The back plate consisted of 2.5 cm wide and 1.6 mm thick fabric material, a synthetic woven 

material made from polyethylene often used for belts, cut into 4.5 cm long strips. Four holes 

were burned into this fabric using a soldering iron to facilitate entry of two wires of different 

length (7.5 cm and 10 cm) (Figure 3.1 B). These wires were later used to fasten the devices 

(datalogger and transmitter) to the back plate (Figure 3.1 B) and could be used to easily attach or 

remove different devices to and from the plate. Some of the VHF transmitters had small tubes 

attached to them; therefore it was easy to just insert the wires. Others had to be glued to a 

different spot directly between the spines. For fixation wires were twisted, trimmed to length and 
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bent in such a way that they were aligned with the devices to prevent entangling or poking the 

hedgehogs. We tested different wires (steel, insulated copper, florist's wire) of which the 

insulated copper wire with a 1 mm diameter turned out to be best as it lasted longer. After 

inserting the wires through the fabric from below, a piece of soft Velcro (loop strap, 2.5 x 4.5 cm 

in size) was glued to the lower surface of the fabric, thereby fixing the wires in place and 

maximising the surface available for the attachment of the complete backpack to the animal. The 

connection of fabric and Velcro could be strengthened if necessary using a paperclip or hot glue.  

To reduce costs, the data loggers were manually put together using components supplied by 

eobs-GmbH (www.e-obs.de, Gruenwald, Germany) or CellGuide Ltd. (www.cell-guide.com, 

Netanya, Israel). The circuit boards for GPS and acceleration measurements were obtained from 

e-obs GmbH and were combined with and soldered to lithium-poly-accumulators of two 

different capacities (260 mAh or 300 mAh at 3.7 V) and cased in heat shrink tubes of 46 mm 

width. Sealing with hot glue at the ends of the heat shrink tubes ensured waterproof packaging. 

Covering the terminal poles used for recharging with hot glue prevented the establishment of 

creeping currents in the field. These custom-built loggers had a total mass of between 19.09 g 

and 20.36 g (e-obs GmbH) or between 11.97 g and 12.83 g (CellGuide Ltd.).  

In this study we used several different models of VHF-transmitters of varying weight. 

Transmitters were supplied by the companies ‘Andreas Wagner’ (www.wagener-telemetrie.de, 

weight ~ 4g), and ‘TELEMETRIE-SERVICE DESSAU’ (www.telemetrie-service.de, Dessau, 

Germany, weight 4 or 11 g), and we also custom built our own devices (weight ~11 g). All 

transmitters sent a simple short signal (150 MHz) for up to several months depending on the 

battery size. With the Wagener and 11 g Telemetrie-Service Dessau models it was possible to 

insert the wire in a tubing at the base of the VHF transmitter (Figure 3.1 A). Our custom-made 

devices had wires attached that were twisted with the wires on the back plate and the 4 g 

transmitters of Telemetrie-Service Dessau were glued directly between the spines.  

 



An easy, flexible solution to attach devices to hedgehogs (Erinaceus europaeus) enables 
long-term high resolution studies 

75 

 
Figure 3.1: (A) A complete backpack glued to the hedgehog's spines including the back plate consisting of firmly 
glued fabric (blue) and loop strap (black below the blue fabric), the wires (green), the GPS device (transparent shrink 
tube) and the VHF transmitter (black). (B) The back plate system from above; scale numbers indicate cm. 
Photograph: Leon M.F. Barthel 

3.3.3 Fitting and removing of the backpack  

After capture during night surveys, and before attaching the backpack, the hedgehogs were sexed 

and weighed (whilst held inside a cloth bag) using a hanging scale (HDB 5K5N, Kern & Sohn 

GmbH, Balingen, Germany, weighing accuracy 5 g). The base plate was only attached to healthy 

hedgehogs with a minimum mass of 600 g. Approximately 3mm was cut from the tips of the 

spines using scissors to provide a larger contact area for attachment. This procedure is harmless 

because spines are made of keratin throughout and do not contain nerves or blood vessels. In 

contrast to previous studies of hedgehogs (Reeve, 1997; Warwick et al., 2006; Braaker et al., 

2014; Abu Baker et al., 2016, 2017; Pettett, Johnson, et al., 2017a; Pettett, Moorhouse, Johnson, 

& Macdonald, 2017b), we used hot glue to attach the back plate because a mobile hot glue gun 

(neo1, Steinel Vertrieb GmbH, Herzebrock-Clarholz, Germany) can be used very quickly and 

precisely and is cost effective. Hot glue sets within seconds and is therefore much faster and 

deliquesces much less than other commonly used glues and epoxies; which were also tested in 

this project. The hot glue was applied across the complete underside of the back plate, with a 

thickness of about 3 to 4 mm and then pressed into the spines, ensuring that the glue 

surrounded all spine tips. Sometimes it was necessary to add glue from the side as well. During 

this procedure, we ensured that the hot glue did not come into contact with the hedgehogs’ skin.  

The back plate was placed on the hedgehog body at the same location as described by Recio et 

al., (2011), around two-thirds along the centre of the main body on its back distal to the head. 
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Data loggers were attached to the back plate by inserting the wires in holes on the device. The 

longer wires were screwed tightly around the device to fix it to the back plate and prevent 

loosening and wobbling. On one of the wires a VHF transmitter (with holes) could be attached 

to locate the hedgehogs in the field or directly clued between the spines if the model had no 

tubing to insert the wire. After twisting we trimmed the wires and aligned the wires with the 

logger. Thus, the combination of short wires aligned to the logger, a spine length away from the 

body ensured that the hedgehogs were not poked. After attaching the backpack, animals were re-

weighed. Initial handling took a maximum of 10 min, including sexing and weighing the animal, 

cutting the spines and glueing the back plate onto the back of the hedgehog. 

After the devices were attached, we located individual hedgehogs by their individual logger 

frequency with the help of a receiver (TRX-1000S, Wildlife Materials Inc., Murphysboro, IL, 

USA, or Wide Range Receiver AR 8200, AOR Ltd., Tokyo, Japan). Hedgehogs were tracked, 

recaptured and checked every day to detect whether they behaved normally or had problems to 

build their nests or overcome obstacles. Additionally, once a week, all hedgehogs were weighed 

and inspected for any problems. At the very end of the experiment, the back plate was cut off 

the spines below the hardened hot glue, to leave as much a length of spines as possible to ensure 

that the skin was not bare. In order to continue monitoring of individuals until the beginning of 

hibernation, we then glued another small VHF unit (~ 4 g) onto the spines using again hot glue. 

3.3.4 Statistical analyses 

Eighteen hedgehogs (8 females, 10 males) were initially fitted with devices for a total time of 

deployment of between 9 days and 42 days (Table 3.1). One hedgehog (ID 15) was not included 

in the data analysis because it was found dead just two days after transmitter attachment after it 

was run over by a train. Thus results are presented for 17 hedgehogs. To compare differences in 

hedgehog body masses recorded prior to the attachment and after the removal of the back plate, 

a Wilcoxon signed-ranks test with continuity correction was conducted. The test was performed 

in R version 3.4.2 using the core package (R Core Team, 2016). Results are reported as means ± 

standard deviation (SD). 

3.4 Results 

The complete backpack system once attached to the animals weighed between 25 g and 31 g; this 

depended on the device and the amount of glue used. The body mass of hedgehogs varied 

between 725 g and 1480 g (mean 972.1 ± 184.7 g, n = 17, Table 3.1), resulting in a relative mass 

of the complete backpack below 4.2 % of body mass. Hedgehogs with attached devices slipped 

under fences and crossed dense vegetation (e.g. Hedera helix, Humulus lupulus) and regularly built 
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new nests without showing any negative effects from the backpack system. During early trials, 

single spines were pulled out of the skin by the load of the backpack. This problem disappeared 

after applying more glue to surrounding spines near the plate.  

Table 3.1: Characteristics of all study animals: ID, sex, body mass at start and end of the experiment, body mass 
change number of deployments, duration of complete deployment, and, for illustrative purposes, the relative mass for 
a 30 g back plate device combination. 

Animal 
ID 

Sex 
Body 
mass 
[g] 

Body 
mass 
[g] 

Body 
mass, 
change 
[g] 

Number of 
deployments 

Duration of 
deployment 
[days] 

Relative mass of the 
heaviest backpack 
[%] 

  
start end 

   
start end 

2 f 1090 935 -155 4 41 2.7 3.2 
7 f 1085 1005 -80 3 41 2.7 2.9 
8 f 795 835 40 4 41 3.7 3.5 
9 f 830 1010 180 4 41 3.6 2.9 
13 f 725 885 160 4 41 4.1 3.3 
16 f 890 1030 140 1 40 3.3 2.9 
17 f 1480 1015 -465 4 41 2.0 2.9 
20 f 1100 990 -110 1 40 2.7 3.0 
1 m 1060 1095 35 4 41 2.8 2.7 
5 m 840 850 10 1 20 3.5 3.5 
10 m 1180 865 -315 0 9 2.5 3.4 
11 m 900 1005 105 2 36 3.3 2.9 
14 m 770 980 210 1 41 3.9 3.0 
15 m 990 dead na 0 2 3.0 na 
18 m 935 1145 210 1 41 3.2 2.6 
19 m 890 990 100 4 41 3.3 3.0 
21 m 1015 1340 325 4 41 2.9 2.2 
22 m 940 1090 150 0 28 3.1 2.7 

 

During the study, the backpack or parts of it detached themselves on three occasions. From one 

hedgehog (ID 5), the backpack system had to be removed after 20 days due to dirt and the 

presence of fly larva under the plate. Later on, this hedgehog was recaptured twice identified by 

the yellow ID tubes and we observed that it had recovered completely and gained weight within 

two weeks. Because the field experiment had been completed, no reattachment was considered. 

One device was found with markings similar to that from canine teeth, indicating that maybe a 

predator had caught the hedgehog. Yet this individual was able to escape and was later re-caught 

by us and the device was reattached. In the third case, a device was found in an open meadow, 

including the spines to which it was glued; there was no visible reason for this detachment. The 

hedgehog was found later that day alive and well and the device was reattached. 

Attachment and removal of GPS devices worked well as the process was swift and easy. Four 

backpacks had to be repaired while attached to the hedgehog, which took about 5 to 10 min of 

wire replacement and application of additional glue. After removing the back plate, the body 
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mass of hedgehogs ranged from 835 g to 1340 g (mean 1004 ± 122.7 g n = 17, Figure 3.2). 

Another hedgehog (ID 10) was found freshly dead, so we took the mass and used it in the 

analyses. There was no difference in body mass between the start and the end of device 

deployment of the hedgehogs (Wilcoxon signed-ranks test with continuity correction, V = 100, p 

= 0.28). Twelve out of 17 animals gained weight during the device deployment period. One male 

(ID 10) and four females (ID 2, 7, 17, 20) lost weight. This male (ID 10) was found dead on the 

ninth day of the experiment; the necropsy confirmed that this individual was infected by 

lungworms which might have already had an impact on its health and behaviour before the 

device had been attached. The area below the backpack of this animal showed no signs of 

infection.  

 
Figure 3.2: Boxplots of body mass of hedgehogs on the first day of deployment (Start) and on the last day of 
deployment (End). Central line: median, x: location of mean, whiskers: 1.5 times the interquartile range, circle: values 
more extreme than 1.5 time’s interquartile range around the median. 

During the study, four females (ID 2, 7, 17, 20) gave birth to hoglets, in three cases confirmed by 

sightings near the nest (ID 2, 7, 20) and/or by the increase in the size of teats of females (ID 2, 

7, 17, 20). One female (ID 17) showed unusual behaviour in terms of restlessly moving during 

the whole night and during some days and died a few days before the study ended.  

3.5 Discussion 

European hedgehogs are an excellent example of an elusive species where data on behaviour, 

movement and ecology is essential for appropriate conservation management. While the UK, 
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Sweden and Denmark report alarming decreases in hedgehog populations, other countries 

cannot provide population sizes or trends because the effort required to adequately monitor 

hedgehogs cannot currently be undertaken (Huijser & Bergers, 2000; Hof & Bright, 2009; Hof, 

2009; Johnson et al., 2015; Krange, 2015). To date, data collection on free-ranging individuals 

has been limited to VHF tracking or short term GPS studies, primarily due to issues of device 

design and attachment. Our design provides a novel way of tackling these problems using cheap 

and effective materials to enable long-term monitoring.  

Here we used fabric material for the ground plate which was cheap, is widely available and 

sufficiently robust for long-term outdoor use. It is elastic, durable, breathable and easy to work 

with. If necessary, the colour could be suitably chosen to avoid making the animal conspicuous 

and more interesting for potential predators (the oddity effect e.g.; Beauchamp, 2014). Insulated 

copper wire of 1 mm diameter proved to be most suitable as it was the most flexible, lightweight 

wire that was also durable; facilitating repeated attachments.  

Previous studies have commonly used fast curing epoxy for the attachment of devices to 

hedgehogs (Esser, 1984; Bontadina, 1991; Reeve, 1997; Warwick et al., 2006; Braaker, 2012; 

Braaker et al., 2012; Braaker et al., 2014; Abu Baker et al., 2016, 2017; Pettett, et al., 2017a; 

Pettett, et al., 2017b). However, the hot glue we used was more suitable to fix the back pack on 

the hedgehog’s spines as it was easy, cheap and fast curing. We have had no problem in applying 

the glue using a small mobile glue gun, and in no case did the glue reach the skin and thus did 

not risk injury of the animals. Previous extensive tests of different glues and resins (Esser, 1984; 

Zingg, 1994) already demonstrated that epoxies suffer from long curing times, emit aerosols, 

generate high temperatures and require additional material to protect the animal. The only 

disadvantage of hot glue may be that it may not work properly if used in very wet weather 

conditions. We do not have enough experience with the dental composite used by Reading et al. 

(2016) to compare its characteristics and handling with hot glue. At 225 US$ for the initial 

application to 10 hedgehogs and 140 US$ for refills, dental composite is much more costly than 

hot glue (~ 55 US$ for 17 hedgehogs for the initial application, 0 US$ for exchanging devices on 

the back plate). 

Our study resulted in a substantially longer duration of logger deployment than other GPS 

studies on hedgehogs at 42 days compared with the previous 8 days (Recio et al., 2011; Glasby & 

Yarnell, 2013; Braaker et al., 2014; Abu Baker et al., 2017). From our personal knowledge of 

many other attachment systems, the system we describe here is smaller and also enables a quick 

and easy exchange of data loggers, from small sensors for light, temperature, acceleration or 
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noise to relatively heavy GPS-loggers. The major improvement is the higher flexibility when 

attaching and removing devices. Other studies of hedgehogs did not reattach GPS devices to 

animals (Abu Baker et al., 2017) or they focused on the replacement of batteries (Boitani & 

Reggiani, 1984). For example, Braaker et al., (2014) reported that they reattached their devices 

but did not provide any details on the method. This may therefore be the first time that a fast 

and easy replacement of GPS data loggers on a fixed back plate has become possible, thereby 

enabling long-term and high-resolution studies of hedgehogs. In our study, we were able to 

detach and reattach rechargeable devices with short battery lifetimes in order to extend data 

collection. Moreover, our system provided the option of flexible solutions for potentially 

sensitive periods such as the mating season or lactation period, during which the behaviour, 

reproductive success or health of the animal might be negatively influenced by cumbersome 

devices. For these periods, such devices could be replaced by small and light VHF transmitters 

which provide the opportunity to continue monitoring the animal. Furthermore, our system 

permits a fast response to unforeseen situations.  

Why do hedgehogs lose attachments? We suspect that the constant drag on the spines could lose 

either the attachment or the spine. The skin may release a single spine at any time. This may 

increase bending forces applied by body movements, accelerating the subsequent loosening of 

spines or the attachment. Such bending moments could be particularly strong that when animals 

curl up as then bending forces would be at a maximum. 

Our mode of attachment permits short handling times and removes the need for anaesthesia. 

With a little bit of experience, the complete time for the initial deployment is less than 10 min. 

The checking and exchange of loggers on a deployed back plate took less than 1 min, including 

the measurement of body mass. This is amongst the fastest handling times which we are aware 

of and minimizing this time is desirable to reduce stress on the animal. 

For hedgehogs, as small hibernating insectivores, body mass is an essential feature for assessing 

individual survival and fitness. Yet fluctuations in body mass can be swift and may even simply 

result from variable foraging success. For example, hedgehogs can increase their mass following 

feeding by 20 g in as little as two hours (Rautio, Valtonen, & Kunnasranta, 2013). While mass 

gains of up to 157 g have been reported within one night through multiple feeding events 

(Morris, 1985). We considered the change in body mass during our study period as a possible 

biomarker to assess to what extend the animals reacted to the backpack – unusually large loss of 

body mass could be an indicator of stress or disturbance of natural behaviour (Boitani & 

Reggiani, 1984; Kristiansson, 1984; Recio et al., 2011). Our modified back plate had a mass of ~2 
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g. Thus, our method permitted the attachment of devices with a mass of a maximum of ~28 g in 

order to stay below the recommended limit of 5% body mass (Sikes et al., 2011), since we 

stipulated that hedgehogs could only be tagged if their body mass exceeded 600 g.  

In our study, we observed weight losses by 5 of 17 individuals (one male and four females), with 

an average mass loss of 225 g (range 80 – 465 g). For the male hedgehog (ID 10), an infection 

with lungworm may have exacerbated the challenges posed by the mating season and therefore 

instigated substantial weight loss resulting in his eventual death. Alternatively, long-term stress 

may have exacerbated the infection with lungworm, compromising immunocompetence (cf. a 

similar argument for lactating females and gastrointestinal hookworm burdens in East et al., 

2015). Weight loss for all four females was most likely associated with giving birth and maternal 

care of hoglets as three of the four females were found with litters during the study. With animal 

ID 17 there were no confirmed hoglet sightings although she showed teats increased in size. The 

mass of hoglets at birth varies between 8 g and 25 g (Herter, 1965; Burton, 1969; Versluys, 1975; 

Morris, 1977) and, with an average of four hoglets per litter, there is a prospective mean weight 

loss of 24 g to 100 g per female. In addition, the energetically costly period of lactation results in 

rapid mass fluctuations for female hedgehogs (Kristiansson, 1984; Rautio, Valtonen, & 

Kunnasranta, 2013). Considering that these individuals were able to give birth and continued to 

care for their litters until the hoglets successfully left the nest, suggests that the life-history of 

these individuals was not substantially affected by our devices.  

The placement of the system on the animal’s back enabled hedgehogs to move unhindered, as 

they were found to undergo normal behaviour of crawling under fences and through dense 

vegetation. While dirt accumulated under the backpack, with regular checks of study animals any 

negative consequences could be prevented. This will also help to identify any possible physical 

deterioration from stressful responses (which we did not observe in our study) to the repeated 

deployment and attachment of recording devices. Since our study took place after the mating 

season, we do not know whether the backpack impedes mating behaviour and copulation, so this 

still needs to be clarified. Overall, our results demonstrate that the backpack had little influence 

on study animal behaviour. However, we still suggest regular re-capture of individuals to mitigate 

any potential negative consequences to welfare. In conclusion, we present an improved method 

for the attachment and reattachment of bio-logging technology to small mammals with a unique 

body structure.  



An easy, flexible solution to attach devices to hedgehogs (Erinaceus europaeus) enables 
long-term high resolution studies 

82 

3.6 Acknowledgements 

We would like to thank Feona Oltmann, Doreen Müller, Annika Krüger, Judith Niedersen, 

Juline Cibis and Catrin Zordick for assistance during field work, and Indra Möllenkotte, Caroline 

Scholz, Cecilia Kruszynski de Assis and Shannon E. Currie for suggestions to improve the 

manuscript. This work was partly funded by the German Federal Ministry of Education and 

Research BMBF within the Collaborative Project ‘Bridging in Biodiversity Science - BIBS’ (grant 

number 01LC1501A-H) and the Leibniz Institute for Zoo and Wildlife Research (IZW). All 

procedures performed in studies involving animals were in accordance with the ethical standards 

of the institution (IZW permit 2016-02-01) and German federal law (permission number 

Reg0115/15 and G0104/14). 

3.7 References 

Abu Baker, M. A., Reeve, N. J., Conkey, A. A. T., Macdonald, D. W., & Yamaguchi, N. (2017). 

Hedgehogs on the move: Testing the effects of land use change on home range size and movement 

patterns of free-ranging Ethiopian hedgehogs. PLoS ONE, 12(7), 1–18. 

doi:10.1371/journal.pone.0180826 

Abu Baker, M. A., Reeve, N. J., Mohedano, I., Conkey, A. A. T., Macdonald, D. W., & Yamaguchi, N. 

(2016). Caught basking in the winter sun: Preliminary data on winter thermoregulation in the 

Ethiopian hedgehog, Paraechinus aethiopicus, in Qatar. Journal of Arid Environments, 125, 52–55. 

doi:10.1016/j.jaridenv.2015.10.002 

Afonso, P., Fontes, J., Holland, K. N. K., & Santos, R. S. R. R. S. (2008). Social status determines 

behaviour and habitat usage in a temperate parrotfish: Implications for marine reserve design. 

Marine Ecology Progress Series, 359, 215–227. doi:10.3354/meps07272 

Barron, D. G., Brawn, J. D., & Weatherhead, P. J. (2010). Meta-analysis of transmitter effects on avian 

behaviour and ecology. Methods in Ecology and Evolution, 1(2), 180–187. doi:10.1111/j.2041-

210X.2010.00013.x 

Beauchamp, G. (2014). Social Predation, How group living benefits predators and prey. London, (UK): 

Academic Press. 

Boitani, L., & Reggiani, G. (1984). Movements and activity patterns of Hedgehogs (Erinaceus europaeus) in 

Mediterranean coastal habitats. Zeitschrift Säugetierkunde, 49, 193–206. 

Bontadina, F. (1991). Strassenüberquerungen von Igeln Zürich. Instute of Zoology. University of Zurich. 

Braaker, S. (2012). Habitat connectivity in an urban ecosystem. ETH Zurich. doi:/10.3929/ethz-a-009787228 

Braaker, S., Kormann, U., Bontadina, F., & Obrist, M. K. K. (2017). Prediction of genetic connectivity in 

urban ecosystems by combining detailed movement data, genetic data and multi-path modelling. 

Landscape and Urban Planning, 160, 107–114. doi:10.1016/j.landurbplan.2016.12.011 

Braaker, S., Moretti, M., Boesch, R., Ghazoul, J., Obrist, M. K., & Bontadina, F. (2014). Assessing habitat 

connectivity for ground-dwelling animals in an urban environment. Ecological Applications, 24(7), 



An easy, flexible solution to attach devices to hedgehogs (Erinaceus europaeus) enables 
long-term high resolution studies 

83 

1583–1595. doi:10.1890/13-1088.1 

Braaker, S., Obrist, M. K., Bontadina, F., & Moretti, M. (2012). Urban connectivity. ENHANCE. 

Enhancing ecosystem connectivity through intervention - benefits for nature and society? Final 

report. 

Bridge, E. S., Thorup, K., Bowlin, M. S., Chilson, P. B., Diehl, R. H., Fléron, R. W., … Wikelski, M. 

(2011). Technology on the move: Recent and forthcoming innovations for tracking migratory birds. 

BioScience, 61(9), 689–698. doi:10.1525/bio.2011.61.9.7 

Brooks, C., Bonyongo, C., & Harris, S. (2008). Effects of Global Positioning System Collar Weight on 

Zebra Behavior and Location Error. Journal of Wildlife Management, 72(2), 527–534. 

doi:10.2193/2007-061 

Burton, M. (1969). The hedgehog. London: Deutsch. 

Cagnacci, F., Boitani, L., Powell, R. a, & Boyce, M. S. (2010). Animal ecology meets GPS-based 

radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions of the Royal 

Society of London. Series B, 365(1550), 2157--2162. doi:10.1098/rstb.2010.0107 

Collins, G. H., Petersen, S. L., Carr, C. A., & Pielstick, L. (2014). Testing VHF/GPS collar design and 

safety in the study of free-roaming horses. PLoS ONE, 9(9), 8. doi:10.1371/journal.pone.0103189 

Crofoot, M. C., Lambert, T. D., Kays, R., & Wikelski, M. C. (2010). Does watching a monkey change its 

behaviour? Quantifying observer effects in habituated wild primates using automated 

radiotelemetry. Animal Behaviour, 80(3), 475–480. doi:10.1016/j.anbehav.2010.06.006 

Culik, B. M., Bannasch, R., & Wilson, R. P. (1994). External devices on penguins: how important is 

shape? Marine Biology, 118(3), 353–357. doi:10.1007/BF00350291 

Dervo, B., Skei, J. K., Berg, O. K., Kraabol, M., Arnemo, J. M., & Dolmen, D. (2010). A comparison of 

external and internal attachments of radio transmitters on adult crested newts Triturus cristatus. 

Amphibia-Reptilia, 31(2), 229–237. 

Doody, J. S., Roe, J., Mayes, P., & Ishiyama, L. (2009). Telemetry tagging methods for some freshwater 

reptiles. Marine and Freshwater Research, 60(4), 293–298. doi.org/10.1071/MF08158 

East, M. L., Schulz, E., Helms, J., Thierer, D., Cablem J., Hofer H. (2015). Does lactation lead to resource 

allocation trade-offs in the spotted hyaena? Behavioral Ecology & Sociobiology, 69, 805–814. 

Esser, J. (1984). Untersuchung zur Frage der Bestandsgefärdung des Igels (Erinaceus europaeus) in Bayern. 

Berichte Der Bayerische Akademie Für Naturschutz Und Landschaftspflege, 8, 22–66. 

Flesch, J. S., Duncan, M. G., Pascoe, J. H., & Mulley, R. C. (2009). A simple method of attaching GPS 

tracking devices to free-ranging lace monitors (Varanus varius). Herpetological Conservation and Biology, 

4(3), 411–414. 

Fraser, K. C., Davies, K. T. A., Davy, C. M., Ford, A. T., Flockhart, D. T. T., & Martins, E. G. (2018). 

Tracking the Conservation Promise of Movement Ecology. Frontiers in Ecology and Evolution, 6, 150. 

doi:10.3389/fevo.2018.00150 

Gattermann, R., Johnston, R. E., Yigit, N., Fritzsche, P., Larimer, S., Ozkurt, S., … McPhee, M. E. 



An easy, flexible solution to attach devices to hedgehogs (Erinaceus europaeus) enables 
long-term high resolution studies 

84 

(2008). Golden hamsters are nocturnal in captivity but diurnal in nature. Biology Letters, 4(3), 253–

255. doi:10.1098/rsbl.2008.0066 

Glasby, L., & Yarnell, R. W. (2013). Evaluation of the performance and accuracy of Global Positioning 

System bug transmitters deployed on a small mammal. European Journal of Wildlife Research, 59(6), 

915–919. doi:10.1007/s10344-013-0770-3 

Graham, M. D., Douglas-Hamilton, I., Adams, W. M., & Lee, P. C. (2009). The movement of African 

elephants in a human-dominated land-use mosaic. Animal Conservation, 12(5), 445–455. 

doi:10.1111/j.1469-1795.2009.00272.x 

Herter, K. (1965). Hedgehogs: a comprehensive study. London, (UK): Phoenix House. 

Hof, A. R. (2009). A study of the current status of the hedgehog (Erinaceus europaeus), and its decline in 

Great Britain since 1960. Royal Holloway, University of London. 

Hof, A. R., & Bright, P. P. W. (2009). The value of green-spaces in built-up areas for ­ western 

hedgehogs. Lutra, 52(2), 69–82. 

Hofer, H., & East, M. L. (1998). Biological conservation and stress. Advances in the Study of Behavior, 21(1), 

405–525. doi:10.1016/S0065-3454(08)60370-8 

Huijser, M. P., & Bergers, P. J. M. (2000). The effect of roads and traffic on hedgehog (Erinaceus europaeus) 

populations. Biological Conservation, 95(1), 111–116. doi:10.1016/S0006-3207(00)00006-9 

Johnson, H., Reeve, N. J., Baker, P., Yarnell, R., Allen, S., & Petrovan, S. (2015). Conservation Strategy 

for West-European Hedgehog (Erinaceus europaeus) in the United Kingdom (2015-2025). London. 

Kaczensky, P., Ganbataar, O., Altansukh, N., Enkhsaikhan, N., Stauffer, C., & Walzer, C. (2011). The 

danger of having all your eggs in one basket-winter crash of the re-introduced przewalski’s horses in 

the mongolian gobi. PLoS ONE, 6(12), 8. doi:10.1371/journal.pone.0028057 

Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and 

planet. Science, 348(6240), aaa2478. doi:10.1126/science.aaa2478 

Kenward, R. (2001). A manual for wildlife radio tagging. London, (UK): Academic Press.  

Krange, M. (2015). Change in the occurrence of the West European Hedgehog (Erinaceus europaeus) in 

western Sweden during 1950-2010. Karlstad University.  

Kristiansson, H. (1984). Ecology of a hedgehog Erinaceus europaeus population in southern Sweden. 

University of Lund, Sweden. 

LaPoint, S., Balkenhol, N., Hale, J., Sadler, J., & van der Ree, R. (2015). Ecological Connectivity Research 

in Urban Areas. Functional Ecology, 29, 868–878. doi:10.1111/1365-2435.12489 

Morris, P. A. (1977). Pre-weaning mortality in the hedgehog (Erinaceus europaeus). Journal of Zoology, 182(2), 

162–164. doi:10.1111/j.1469-7998.1977.tb04150.x 

Morris, P. A. (1985). The effects of supplementaey feeding on movements of hedgehogs (<i>Erinaceus 

europaeus). Mammal Review, 15(1), 23–32. 

Pearl, M. C. (2000). Research techniques in animal ecology methods and cases in conservation science. 

The Journal of Wildlife Management, 65(3), 599. doi:10.2307/3803113 



An easy, flexible solution to attach devices to hedgehogs (Erinaceus europaeus) enables 
long-term high resolution studies 

85 

Pettett, C. E., Johnson, P. J., Moorhouse, T. P., Hambly, C., Speakman, J. R., & Macdonald, D. W. 

(2017a). Daily energy expenditure in the face of predation: hedgehog energetics in rural landscapes. 

The Journal of Experimental Biology, 220(3), 460–468. doi:10.1242/jeb.150359 

Pettett, C. E., Moorhouse, T. P., Johnson, P. J., & Macdonald, D. W. (2017b). Factors affecting hedgehog 

(Erinaceus europaeus) attraction to rural villages in arable landscapes. European Journal of Wildlife 

Research, 63(3), 12. doi:10.1007/s10344-017-1113-6 

R Core Team. (2016). R: A language and environment for statistical computing. 

Rautio, A. (2015). On the northern edge – ecology of urban hedgehogs in eastern Finland. University of 

Eastern Finland. 

Rautio, A., Valtonen, A., & Kunnasranta, M. (2013). The effects of sex and season on home range in 

European hedgehogs at the northern edge of the species range. Annales Zoologici Fennici, 50(1–2), 

107–123. doi:10.5735/086.050.0110 

Reading, R. P., Kenny, D., Murdoch, J., & Batdorj, S. (2016). Use of dental restorative temporization 

material for attaching radiotransmitters to hedgehogs. Wildlife Society Bulletin, 40(2), 355–358. 

doi:10.1002/wsb.655 

Recio, M. R., Mathieu, R., & Seddon, P. J. (2011). Design of a GPS backpack to track European 

hedgehogs Erinaceus europaeus. European Journal of Wildlife Research, 57(6), 1175–1178. 

doi:10.1007/s10344-011-0530-1 

Reeve, N. J., Bowen, C., & Gurnell, J. (2015). The Regents’s Park hedgehog project; Identification 

marking 2015., 1–2. 

Reeve, N. J. (1994). Hedgehogs. T & A. D Poyser. 

Reeve, N. J. (1997). The Survival and Welfare of Hedgehogs (Erinaceus europaeus) After release back into 

the wild. Animal Welfare, 7, 189–202.  

Scheibe, K. M., & Gromann, C. (2006). Application testing of a new three-dimensional acceleration 

measuring system with wireless data transfer for behavior analysis. Behavior Research Methods, 38(3), 

427–433. 

Schneirla, T. C. (1950). The relationship between observation and experimentation in the field study of 

behavior. Annals of the New York Academy of Sciences, 51(6), 1022–1044. doi:10.1111/j.1749-

6632.1950.tb27331.x 

Shamoun-Baranes, J., Bom, R., van Loon, E. E., Ens, B. J., Oosterbeek, K., & Bouten, W. (2012). From 

sensor data to animal behaviour: An oystercatcher example. PLoS ONE, 7(5), e37997. 

doi:10.1371/journal.pone.0037997 

Shilova-Krassova, S. A. (1952). The nutrition of the hedgehog (Erinaceus europaeus L.) in southern forests. 

Zoologicheskii Zhurnal, 2(31), 944–947. 

Sikes, R. S., Gannon, W. L., & Animal Care and Use Committee. (2011). Guidelines of the American 

Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92(1), 235–

253. doi:10.1644/10-MAMM-F-355.1 



An easy, flexible solution to attach devices to hedgehogs (Erinaceus europaeus) enables 
long-term high resolution studies 

86 

Vandenabeele, S. P., Shepard, E. L. C., Grémillet, D., Butler, P. J., Martin, G. R., & Wilson, R. P. (2015). 

Are bio-telemetric devices a drag? Effects of external tags on the diving behaviour of great 

cormorants. Marine Ecology Progress Series, 519, 239–249. doi:10.3354/meps11058 

Vandenabeele, S. P., Wilson, R. P., & Wikelski, M. (2013). New tracking philosophy for birds. Frontiers in 

Ecology and the Environment, 11(1), 10–12. doi:10.1890/13.WB.002 

Versluys, S. D. W. (1975). Wel en wee van de egel. In Diergeneeskunding Memorandum 22nd Year (pp. 235–

301).  

Voigt, C. C., Thalwitzer, S., Melzheimer, J., Blanc, A.-S., Jago, M., & Wachter, B. (2014). The Conflict 

between Cheetahs and Humans on Namibian Farmland Elucidated by Stable Isotope Diet Analysis. 

PLoS ONE, 9(8), e101917. doi:10.1371/journal.pone.0101917 

Warner, D. A., Thomas, J., & Shine, R. (2006). A simple and reliable method for attaching radio-

transmitters to lizards. Herpetological Conservation and Biology, 1(2), 129–131. 

Warwick, H., Morris, P. A., & Walker, D. (2006). Survival and weight changes of hedgehogs (Erinaceus 

europaeus) translocated from the Hebrides to Mainland Scotland. Lutra, 49(2), 89–102. 

Wilson, D. E., Cole, F. R., Nichols, J. D., Rurdran, R., & Foster, M. S. (1996). Measuring and monitoring 

biological diversity. Standard methods for mammals. Washington: Smithsonian Institution Press.  

Wilson, R. P., & McMahon, C. R. (2006). Measuring devices on wild animals: What constitutes acceptable 

practice? Frontiers in Ecology and the Environment, 4(3), 147–154. doi:10.1017/CBO9781107415324.004 

Zingg, R. (1994). Aktivitaet Habitat- und Raumnutzung von Igeln (Erinaceus europaeus) in einem ländlichen 

Siedlungsgebiet. Universität Zürich. 

 

 

Figure 3.3: Hedgehog with the back plate system 
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4.1  Abstract 

Anthropogenic activities can result in both transient and permanent changes in the environment. 

Whereas temporal disturbances typically create a transient habitat change, spatial disturbances 

such as fragmentation are often of a permanent nature or even intensify. Temporal disturbances 

are frequently studied with a focus on stress and welfare whereas spatial changes such as habitat 

fragmentation are usually investigated in the context of conservation-oriented population 

viability, yet wildlife populations are regularly subjected to both types of habitat change. 

Therefore, a unified framework to study the response of wildlife to different types of disturbance 

and its resulting habitat change seems desirable. We studied spatial and temporal behavioural 

responses in terms of foraging movements and nesting behaviour of European hedgehogs to a 

transient (open-air music festival) and a permanent (fragmented landscape) disturbance in the 

conurbation of Berlin, Germany, in two distinct habitats and during two years using a Before and 

After and Control and Impact study design (BACI). Confronted with the music festival, 

hedgehogs substantially changed their movement behaviour and nesting patterns and 

substantially decreased the degree of functional coupling (DFC) of their activity patterns, 

suggesting that this was a substantial stressor and that they had to re-evaluate the trade-off 

between foraging success and risk aversion. Hedgehogs in a fragmented area used larger home 

ranges and moved with higher speed but otherwise showed behaviours and high DFCs similar to 

individuals in an unfragmented environment, suggesting that fragmentation posed a moderate 

challenge with which they could cope. The unpredictable acute yet transient habitat change 

(disturbance) affected by the music festival had a more substantial effect than the static 

disturbance through fragmentation, to which hedgehogs had a long time to adjust to. We 

conclude that it is valuable to view and study disturbance from a unified perspective as a process 
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of habitat change, that an observed response to one form of habitat change (disturbance) may 

not necessarily predict the degree and intensity of response to other forms of habitat change 

(disturbance), that males and females may differ in their responses, and that detailed automated 

recordings of foraging movements using GPS-devices combined with 3D-accelerometers can 

reveal the degree and intensity by which wildlife responds to and copes with particular forms of 

disturbance. Such a perspective will benefit both studies on welfare and the conservation of 

threatened species. 

Keywords: Disturbance, fragmentation, anthropogenic stressors, urban ecology, behavioural 

plasticity, GPS telemetry, hedgehogs  

4.2 Introduction 

Humans change their environment in different ways either slowly and indirect, e.g. through 

changes over the last few centuries, or fast and direct within a few days when building a road or 

removing a forest patch (McDonnell and Hahs, 2015; Wong and Candolin, 2015; Hastings et al., 

2018). Faster changes may pose larger problems than slow changes as they require individual 

animals to show appropriate behavioural flexibility or plasticity within their own lifetime to 

respond appropriately and cope. This flexibility could contribute to better population viability in 

the face of frequent or regular disturbances. A disturbance describes every change in an 

environment that poses a change in the ecosystem (see Rykiel, 1985). In human-modified 

ecosystems, disturbances can range from light, noise, over air pollution to habitat fragmentation 

and a host of other processes (Walker, 2012; McDonnell and Hahs, 2015). When habitats are 

disturbed (and thus changing), animals must in principle reconsider trade-offs between foraging 

success and risk aversion similar to the urban landscape of fear (Bleicher, 2017; Stillfried et al., 

2017). Wildlife and wildlife populations have several options to respond to various forms of 

disturbance: within a lifetime of an individual, disperse and seek another place to live or stay put 

and adjust through behavioural plasticity. In addition, via several generations, genetic changes 

may be possible to genetically adapt to the new environmental conditions if they are permanent 

(Wong and Candolin, 2015).  

However, it is challenging to disentangle temporal, acute and permanent stressors and test their 

effects within one species. In this study, we aim to investigate the effects of habitat 

fragmentation and a temporal disturbance (noise and increased human presence) in European 

hedgehogs (Erinaceus europaeus) who already live in an urban conurbation. For this purpose, we 

monitored the behaviour of European hedgehogs in two populations in Berlin where one 

population faced fragmentation and the other faced several presumed stressors associated with a 
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music festival. In particular, we investigated the spatial, temporal and behavioural response of 

hedgehogs in a substantially anthropogenic modified environment, urban (woodland) parks.  

Festivals often take place in open green areas that are normally open for other public purposes 

or, sometimes, are not accessible to the general public. Hosting a festival implies that in a specific 

area heavy machines will be used by many people present in order to set up stages and other 

focal areas of amusement within a short time frame. During a festival, a huge crowd of people 

wanders around the festival site, loud music plays through most of the day and night and for 

enjoyment and safety, the whole area is lit up and fenced. Dependent on the animal species, they 

are therefore confronted with additional noise, light and the presence of people.  

Fragmentation is created by transforming habitats important to a particular species into smaller 

patches, thereby creating a mosaic-like landscape (Doncaster and Dickman 1987; Wilcove et al. 

1986; Fahrig 2003). Thus, fragmentation can impede movement among resource patches and 

limit access to mating partners (Banks et al., 2007; Shepard et al., 2008). Animals may be 

substantially affected by habitat fragmentation if remaining semi-natural food patches are too far 

away (Baker and Harris, 2007). Some species can adjust their behaviour to these circumstances 

(Lowry, Lill and Wong, 2013) but it can lead to an “ecological trap” (Wong and Candolin, 2015). 

Some examples of behavioural plasticity include increasing home ranges and adjusting activity 

rhythms to cope with fragmentation (Hertel et al., 2016; Hertel, Swenson and Bischof, 2017; 

Soanes et al., 2018). These phenotypic changes induced by anthropogenic factors are generally 

greater than on natural habitat changes (Wong and Candolin, 2015).  

The European hedgehog (Erinaceus europaeus) lives at higher abundances in villages and human 

settlements than rural areas (Dowding et al., 2010; Hubert et al., 2011; Pettett, Moorhouse, et al., 

2017). Possible reasons are predator avoidance (Doncaster 1994; Krange 2015), as predators 

such as the Eurasian badger (Meles meles) are rarer within conurbations, and the positive effects of 

the mosaic-like structure offered by conurbations, where bushes and vegetation for daily nests 

and open or semi-open areas to search for food are readily available in many areas (Kristiansson, 

1984; Hubert et al., 2011). Hedgehogs can also move out of unfavourable habitats (Doncaster, 

Rondinini, and Johnson 2001). These traits and the relatively small home range size make 

hedgehogs a good model species for urban wildlife-human interactions of small mammals. 

Usually, urban parks are favourable environments for hedgehogs because they provide food and 

resting places and have no big artificial barriers. The mosaic-like structure can also pose 

problems since dispersal out of unfavourable habitats can be limited if the urban matrix provides 

a very patchy environment with only small, isolated patches of suitable habitat and evolutionary 
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adaptations will require many generations (Wong and Candolin, 2015). Therefore, it is at present 

unclear how wildlife such as hedgehogs cope with habitat fragmentation as an example of 

environmental disturbance imposed by anthropogenic changes in conurbations in that good 

habitat such as parks are interspersed with many urbanized structures surrounding parks. 

To investigate the behavioural plasticity in response to acute and permanent habitat changes, we 

analysed the behavioural response on different levels. First, we used GPS data to investigate the 

home range area and movement behaviour of hedgehogs which is closely related to foraging 

(Braaker et al., 2014). Second, we assessed the occurrence and circadian rhythmic pattern of 

specific behaviours because hedgehogs are known to be strictly nocturnal and a reduction in the 

occurrence of specific behaviours in challenging circumstances are considered to be a sign of 

stress (Reeve 1994; Morris 1997) even if hedgehogs are recognised to show behavioural plasticity 

(Dowding et al., 2010). Third, we monitored nesting behaviour. Day nests of hedgehogs are 

important because they are used by all adults as resting sites during the day, by females also as 

the locality where young are kept. Hedgehogs sleep in them almost every day and typically reuse 

the same nest for several successive days (Reeve and Morris, 1985; Haigh, O’Riordan and Butler, 

2012). 

The studies were performed in two different habitats to investigate two scenarios: We studied 

hedgehogs in a large Berlin urban park, the Treptower Park, with little habitat fragmentation and 

low noise levels at night during normal times where the authorities permitted the event of a huge 

music festival with over 140,000 visitors, and investigated the effects of habitat fragmentation in 

another large urban park, the Tierpark Berlin, with many daytime visitors but very low nightly 

disturbance from people. We hypothesised that disturbance influenced movements in terms of 

space use, activity patterns and nesting behaviour, behaviours which – particularly during the 

reproductive season – are likely to have fitness consequences (Lowry, Lill and Wong, 2013). 

4.2.1 Predictions 

In the following, we present the predictions for (A) the acute disturbance (habitat change) as 

presented by the music festival, and (B) the permanent (chronic) habitat change in terms of park 

fragmentation:  

A: In the acute habitat change, hedgehogs need to re-evaluate the trade-off between foraging 

profitability and safety by reducing the vicinity to people or anthropogenic sources of 

disturbance, and reconsider options for easily accessible food. 

(1) Regarding the space use we think that hedgehogs are able to move out of the 
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unfavourable habitat and thus could either leave the area or show adjustment of 

movement behaviour: (1a) We predict avoidance of the previously favoured area 

which would result in shifting the centre of the home range area used, detectable by 

shifting centroids of nightly calculated Minimum Convex Polygons. (1b) Another co-

occurring or independent adjustment could be a decrease in the nightly used home 

range area. 

(2) We propose that hedgehogs adjust their movement behaviour. The animals now have 

to look for the same amount of food in a potentially less favourable and/or smaller 

area and thus foraging effort may have to be increased. We, therefore, predict under 

disturbance an increase in computed search intensity, higher turning angles and 

slower speed.  

(3) The relative time spent in various behaviours will be shifted towards higher vigilance, 

or general levels of activity will be reduced (Risk aversion). 

(4) We predict that high levels of disturbance during the festival induce females and 

males to switch their nests more often and the number of days spent in the same nest 

decreases. 

B: Habitat fragmentation (chronic habitat change). 

(1) As the movement of hedgehogs is strongly associated with linear structures (Dowding et 

al., 2010), fragmentation will increase the area of space that is of no interest to hedgehogs 

and thus increase the distances they have to cover. Thus, under fragmentation, the home 

range area would be bigger than in the non-fragmented park. This is not the case if the 

hedgehogs had access to one very big food patch which we consider to be unlikely 

(Luniak 2004). 

(2) As fragmentation is likely to increase distances for commuting between favourable food 

patches, movement characteristics will be affected, such as higher speed, a larger number 

of smaller turning angels and in general a lower search intensity than in a non-disturbed 

non-fragmented habitat. 

(3) Behaviour, in general, should not be different but due to the used area behaviour could 

change accordingly.  

(4) Fragmentation may influence nesting behaviour in such a way that animals either have to 
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change their nests more frequently to be closer to favourable food patches, or extend 

their stay in nests if they are close to favourable food patches.  

4.3 Methods 

4.3.1 Fieldwork  

Fieldwork was conducted between 10 August and 20 September 2016 in the Treptower Park, in 

southeast Berlin, Germany (52.48846°N, 13.46974°E) and in August and September in 2017 in 

the Tierpark, a big park containing a zoological garden in East Berlin, Germany (52.50326°N, 

13.52976°E). Both parks have variable green spaces from short meadow over variable shrubs 

and hedges to shrubs and include big trees. Additionally, there are playgrounds, larger sealed 

areas and footpaths. Treptower Park, the site where the music festival took place, is open to the 

general public 24 hours and 7 days per week whereas the Tierpark is closed to the general public 

from dusk to the morning. The Tierpark contains numerous animal enclosures, small buildings 

and many more concrete footpaths, creating a mosaic-like fragmented habitat with many non-

accessible areas. The maintenance of the parks is similar, with leaf litter being removed from 

some areas, particularly the footpaths, and being left in bushes and scrub throughout the year, 

offering a similar habitat in both parks suitable for hedgehogs and other wildlife.  

In 2016 the Lollapalooza Festival with over 140.000 visitors took place in the Treptower Park. 

From 29 August to 16 September, a substantial portion of the park (excluding a war memorial 

and the south-eastern segment) was massively changed. Music stages, amusement facilities and 

enclosures were constructed and built between 9 August and 09 September, the festival took 

place on 10 and 11 September, and deconstruction of all facilities took place from 12 September 

onwards. We collected data on hedgehog movements and behaviour before the festival (pre-

festival) until construction work for the festival started and during the festival-phase, including 

the time periods of construction and deconstruction. The pre-festival period is defined from 10 

August until 28 August and represents the control for both the transient disturbance caused by 

the festival and, as an example of hedgehogs living in an unfragmented and undisturbed urban 

habitat, for the hedgehogs studied in the Tierpark.  

Hedgehog capture and logger attachment 

At the beginning of each study period, surveys were carried out during two to three nights at 

least one hour after sunset to find active hedgehogs by spotlighting (P14.2, LED Lenser, 

Solingen, Germany). Every hedgehog located was marked with five shrink tubes on the spines 

(Mori et al., 2015). The tubes were labelled with a number starting with 1 to identify them during 
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recapture (N. J. Reeve, pers. comm. 2016). From all previously captured hedgehogs, we selected 

eight hedgehogs (four of each sex) and equipped them with GPS/ACC loggers (E-obs GmbH, 

München, Germany) and VHF transmitters using a backplate system (Barthel, Hofer and Berger, 

2018). We only used hedgehogs with a body mass exceeding 600g to ensure that the attached 

logger equipment fell below the 5 % body mass rule (Hofer and East, 1998; Sikes et al., 2011). 

During the study, all hedgehogs were weighted and inspected for any problems once a week; 

these occasions were also used for the necessary reloading of the GPS/ACC data loggers. 

Nesting behaviour was recorded every day by locating the VHF signals of each hedgehog 

carrying a logger (TRX-1000S, Wildlife Materials Inc., Murphysboro, IL, USA, or Wide Range 

Receiver AR 8200, AOR Ltd., Tokyo, Japan).  

Logger/ Sampling Setup setup / ACC 

GPS positions were taken during expected activity times of hedgehogs from 1900 hours to 0700 

hours in 10 min intervals, in bursts of five points. VHF transmitters continuously broadcast 

signals throughout the whole study period. Acceleration data was recorded alongside GPS data 

every minute. These accelerometers are programmed to record a short burst of high-resolution 

data. A sampling frequency of 100 Hz per axis was chosen for the present study. All three 

available axes were measured simultaneously. A burst took 2.64 s for two individuals, the other 

individuals were recorded with bursts of 2.5 s. This difference in burst length is not ideal, 

although the burst length is only important for three out of 25 predictors used for the model (see 

chapter “Behaviour prediction and budget”). Bursts were recorded every minute. 

To account for missing data because of recharging or logger malfunctioning, all data with less 

than 1430 (1440 for complete 24 h) measurements between 00:00 and 23:59 were removed from 

the data set. This removal of data ensured that only days with a comparable length and with the 

same number of records during days and nights were considered for the analysis and therefore 

did not favour behaviours that only occurred during a specific time of the day. 

Nesting Behaviour 

Nests of hedgehogs were recorded every day. The position was recorded using a Garmin GPSmap 

60CSx device by Garmin Deutschland GmbH, Germany. For this study, relevant data were 

recorded alongside some other traits (Supplementary Table 4.11) and were checked every day for 

the nest the hedgehogs have slept in. If a hedgehog was found in the vicinity (2 m) of a nest 

without a new nest, the existing nest was noted as the day nest of the hedgehog. Some animals 

had to be removed from the dataset of 2017 in the fragmented habitat because they occupied 
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fewer than 5 nests and lost their VHF transmitter. If a hedgehog lost a transmitter and could not 

be found at night to re-attach the transmitter, or night work had been discontinued, the nest 

surveys for the individual were stopped. 

4.3.2 Analyses  

GPS Data 

For all comparison within the acute habitat change, all data of the particular park were used; in 

comparisons, with the fragmented park, only the data from the pre-festival period was used. 

Mean points of the GPS data collected within 10 s were calculated. To conserve the natural 

variability we decided to use every night as a single event and calculated the following values 

accordingly using R (R Core Team, 2018). To assess the nightly used area we calculated the 95 % 

Minimum Convex Polygon (MCP95) and the Kernel density estimates (kde50) as a core area of 

use (Calenge, 2006; R Core Team, 2018). In both cases, we used a linear model (Pinheiro et al., 

2018) to perform a linear mixed effects analysis on the relationship between used area (mcp95 or 

kde50) and our three treatments. As fixed effects, we entered treatment and sex with interaction 

into the model. As random effects, we had intercepts for individuals. To fit the assumptions we 

included a power function using varPower() as weights. Visual inspection of residual plots did 

not reveal any obvious deviations from homoscedasticity or normality. P-values were obtained 

calculating an analysis of variance (Fox and Weisberg, 2011) followed by a general linear 

hypothesis and multiple comparisons (Hothorn, Bretz and Westfall, 2008) using a matrix with 

only relevant comparisons between following groups: pre vs. pre comparing both sexes, pre vs. 

festival within sex, pre vs. fragmented within sex, fragmented vs. fragmented comparing both 

sexes (Figure 4.1). 
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Figure 4.1: statistical study design, in green the control from the pre-festival period in the Treptower Park is compared 
to the festival dataset (reddish) and the fragmented dataset of the Tierpark (blue), arrows indicate statistical 
comparisons.  

We proceeded in a similar manner when analysing the movement speed of hedgehogs as a 

travelled distance for a time interval between GPS positions [m/s]). We used the lme4 package 

to perform a linear mixed effects analysis on the relationship between speed and treatment 

(Bates et al., 2015). As fixed effects, we entered treatment and sex (with interaction) and as 

random effects, we had intercepts for individuals. Visual inspection of residual plots did not 

reveal any obvious deviations from homoscedasticity or normality. P-values were obtained by 

applying an analysis of variance and running general linear hypotheses and multiple comparisons 

(Hothorn, Bretz and Westfall, 2008) using similar comparisons as above. 

To evaluate how animals use the available habitat we calculated a ratio of area used (mcp95 in 

[m²]) and distance travel [m] per night (calculated with st_length, Pebesma 2018), resulting in a 

measure of search intensity with units [m/(m²*d)] or moved distance per square meter and day. 

To evaluate whether treatment or sex had an effect on this parameter we used the SpaMM 

package (Rousset and Ferdy, 2014) by first finding the right fit and then comparing the null 

model with different models. 
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To detect wherever the hedgehogs shifted their utilized area, the longitudinal and latitude values 

of centroids per night were used separately using function centroid() (Hijmans, 2017). We 

normalized the values by subtracting the mean value from the pre-festival phase and worked 

with the absolute values. For the latitude and longitude values, linear mixed effect models were 

fitted. Both time values hat to be square root transformed before fitting the model to meet the 

assumptions of homoscedasticity or normality. P-values were obtained from an analysis of 

variance (Fox and Weisberg, 2011). 

Movement of hedgehogs was further characterized by calculating turning angles (Michelot, 

Langrock and Patterson, 2016) and plotted as absolute values because we were interested in the 

general movement. Results were then randomly sampled and compared in a permutation 

approach 1000 times using a two-sample two-sided Kolmogorov-Smirnov test (R Core Team, 

2018). The comparison was only done on the treatment level (pre-festival vs. festival and pre-

festival vs. fragmentation). 

ACC/acceleration data analyses 

Behaviour prediction and budget 

We used a supervised machine learning algorithm for behaviour detection. The train and test 

dataset for the behaviour recognition were taken from a previous study. The whole procedure is 

described in Chapter 5. By joining multiple Support Vector Machines (SVM) the selected 

behaviours were classified. Here, we considered three behaviour classes: resting, balling up and 

locomotion (referred to as walking). To account for behaviours that are not included in the 

model but might occur in hedgehogs, a threshold for the probability belonging to a class of 0.7 

was set for the SVM. Otherwise, the behaviour was classified as “other” behaviour.  

In addition, the raw data were tested for missing measurements within the bursts. All bursts 

where fewer data were recorded than intended by the settings were removed (264). The SVM 

model was then used to assign a behaviour prediction to every burst and its corresponding time 

stamp. The behaviour of every individual was treated for the following tests separately. To test 

for effects on behaviour classes, a general linear model was performed (Bates et al., 2015) taking 

a quotient of the behaviour in relation to all behaviours. As a fixed effect, the treatment, as well 

as the sex and the interaction, were put into the model. Individuals were included as random 

effect. This was followed by an analysis of variance (Fox and Weisberg, 2011) and general linear 

hypotheses and multiple comparisons (Hothorn, Bretz and Westfall, 2008) using the same matrix 

as before. 
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Stress detection via the Degree of Functional Coupling (DFC) 

The Degree of Functional Coupling (DFC) is a measure for the synchrony of (internal) cyclic 

behaviour and the (external) environmental 24 h period (Sinz and Scheibe, 1976; Berger et al., 

1999; Scheibe et al., 1999). To calculate DFCs, the standard deviation of raw acceleration data of 

all three axes were calculated and summed up per measurement interval. Following the protocol 

of Berger et al. (Berger et al., 2003; Berger, 2011), this time series was autocorrelated in order to 

filter out the noise and enhance rhythmic components. Afterwards, a Fourier transformation was 

used to break it down into its rhythmic components, as described by the percentage of each 

component in the original time series. The longest Fourier period tested covered the entire 

length of the autocorrelation function (here three days); the shortest Fourier period tested was 

twice the sampling interval (here 2 minutes). The DFC is then calculated by dividing the portion 

of Fourier transformation components that harmonize with the 24-hour rhythm by the entirety 

of the Fourier spectrum. To gain an adequate statistical power of the 24 hour period, DFC were 

calculated for time series of three days equivalent to the procedure of a moving average (first 

data set covers day 1 to 3, second data set covers day 2 to 4 and so on). The resulting DFCs were 

assigned to the day of the three days that entered the calculation for the first time. These data 

were then analysed using a linear mixed effect model with treatment and sex and their 

interaction, the values had to be Arcsine transformed in order to meet the assumptions of 

homoscedasticity and normality. Afterwards, an analysis of variance (Fox and Weisberg, 2011) 

and general linear hypotheses and multiple comparisons (Hothorn, Bretz and Westfall, 2008) was 

performed. 

Nesting behaviour  

For each nest, the duration of occupation was scored as exact if both starting and stopping dates 

of nest use were recognised, or as right-censored (a minimum estimate), if either the starting date 

or the stopping date at the beginning and end of study periods were not known. Then, the 

survivorship function was calculated using package survival (Therneau, 2015) separately for both 

parks and treatment conditions. If significance was found a post hoc Mantel test was performed 

to detect the source of the difference. 
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4.4 Results 

4.4.1 Movement data 

Data of 16 hedgehogs with between 3 and 41 nights per animal were collected resulting in 426 

tracked nights in total including 156 nights for the control, 152 for the festival and 118 for the 

fragmented studies. Sexes are represented with 236 females and 190 male data points.  

The roamed area (Figure 4.2 A) measured by the mcp95 was significantly affected by treatment 

(χ2 = 54.82, df = 2, p < 0.001) and sex (χ2 = 6.48, df = 1, P = 0.011). Treatment was similar 

between sexes (χ2 = 1.7432, df = 2, P = 0.42). A post-hoc test revealed females in the control 

group used smaller areas by 1.9 times than males in the control group (2.55 ha to 4.71 ha, 

respectively). While both sexes decreased their area during the festival (acute change (Estimate 

(E) = -1.0290, std. Error (se) = 0.2214, z value (z)= -4.648, Pr[>|z|] <0.001, and males -1.4665 

0.3770 -3.890 <0.001) only females increased the area in the fragmented habitat (1.9421 0.6945 

2.796 0.0283). Male hedgehogs already occupying a bigger area than females in the control and 

showed only a slight increase to the control group (0.7302 0.8663 0.843 0.9200). While males and 

females in the fragmented habitats had similarly sized home ranges (0.6849 0.8706 0.787 0.9390). 

These were replicated by the used core area measured by the kde50, except for the comparison 

between pre-festival and fragmented within the females (Supplementary Figure 4.2). 

Looking into the general habitat effects on movement behaviour (Figure 4.2 B – D), speed was 

affected by treatment (χ2 = 33.3, df = 2, p < 0.001) but not by sex (χ2 = 1.06, df = 1, p = 0.303) 

or their interaction (χ2 = 1.234, df = 1, p = 0.5396). During the festival, hedgehogs had lower 

speeds (0.038 m/s ± 0.008) and hedgehogs in the fragmented habitat (0.0485 m/s ± 0.001) were, 

in general, moving faster than in the control group (0.0404 m/s ± 0.008) (Figure 4.2 B). Search 

intensity [m/m²*d] (Figure 4.2 C) was also only affected by treatment (χ2 = 7.4195 df= 2 p= 

0.02448) and neither by sex nor by the interaction (χ2 = 0.1074 df= 1 p= 0.74315, χ2 = 3.2151 

df= 2 p= 0.20037 respectively). The mean value was the lowest for the control and the highest 

for the festival. The largest confidence interval has a fragmented value. All these movement 

difference should add up into the characteristics of the movement, for example, the turning 

angles of hedgehogs (Figure 4.2 D). Even if the curves of the subsample look slightly different 

there was no difference in the characteristics of the turning angles (Figure 4.2 D). 
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Figure 4.2: Results of the GPS data A: MCP 95 indicating Measurements for used area dots representing females, 
triangles males; B: mean of speed [m/s] over both sexes against treatment C: mean of search intensity [m/(m²*d)] 
over both sexes against treatment; dots/triangles indicate mean values; whiskers are confidence interval, D: 
Distribution of absolute turning angles showing one of the subsamples that were tested 

A shift in the utilized area  

The centroid values of the daily used area present the mean point of the used area and should 

have shifted if the hedgehogs used other areas, and the distribution should change if they avoid 

certain areas. In the control, hedgehogs facilitated a central big open meadow and both sexes had 

a near to normal distribution in their longitudinal values (Figure 4.3). While facing the acute 

changes of the festival hedgehogs went further away from their overall mean centroid by on 

average ~35/30 m (longitudinal/latitudinal) in female and in males more than 65/105 m (effect 

of treatment latitude χ²= 80.5897, (1) p < 2.2e-16/ longitude χ²= 80.858, (1) p < 2.2e-16, and 

the interaction of treatment and sex (χ ²=21.4375, (1) p = 3.655e-06 / χ ²=11.790, (1) p = 

0.0005954).).  

A B 

C D  
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Figure 4.3: Centroid distribution circle/reddish = pre.-festival, triangle/bluish = festival, density shows kernel density 
estimate, all y-axes in the density plots show the same range.  

Behaviour  

In all considered behaviours (balled up, walking, resting, other - Supplementary) we only found 

an effect in treatment and in the case of balling up and resting in the interaction (Figure 4.4). 

Differences occurred between pre-festival and festival. In females and males balling behaviour 

was detected more frequently during the festival than in the control phase for either sex, females 

showed an increase of 0.153 and males 0.2. With regard to the walking behaviour, only males 

showed an increase of 0.03. Resting behaviour was identified less in both sexes during the 

festival with 0.21 in females and 0.014 in males. All these behaviours are part of the daily rhythm 

of the hedgehogs which is also represented in the DFC value. The only recorded effect was seen 

due to treatment, where both sexes showed the same patterns. Both sexes showed similar values 

in the control and the fragmented environment, while the values during the acute event were 

lower than the control. The highest values where observed in the fragmented habitat, while 

males in the fragmented habitat had lower values with a higher variation. 
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Figure 4.4: Behaviour and circadian rhythmic of hedgehogs in the context of acute/ transient and permanent habitat 
changes. A; odd value of balled up behaviour B; relative part of walking behaviour C; resting behaviour D; Degree of 
functional coupling; whiskers = 95% family-wise conf.int 

Nesting Behaviour  

During the pre-festival period, female hedgehogs used their nest in 66.1 % of the cases on more 

than one day. Nests of male hedgehogs were used with a probability of 57.8 % on the next day. 

Only the comparison within the dataset of 2016 (Treptower Park) pre-festival vs. festival showed 

differences between groups. During the festival, nests of male hedgehogs were used significantly 

shorter (Log-Rank, N=156, Mantel, p-Value = 0.02). Even the probability of using a new nest 

the next day is approx. 12 % lower (57.8 % vs. 45.5 %). With a probability of 0 %, a nest was 

used longer than eight days. In contrast for females, values were in general similar to or higher 

than during the pre-festival phase showing no significant differences (Log-Rank, N=88, Mantel, 

p-value=0.83, Figure 4.5). 

A B 

C D 



Distinguishing spatial from temporal effects in disturbance biology: Hedgehogs in the 
urban matrix of habitat fragmentation and noise pollution 

102 

 
Figure 4.5: Nest utilization period probability of both datasets dataset A dataset B separately for sex. Dataset A: 
pre/after-festival and festival phase of 17 hedgehogs (nine males, eight females) p values coming from Log-rank test 
females: Log-Rank, N=88, Mantel, p-value=0.83; males: Log-Rank, N=156, Mantel, p-Value=0.02. Dataset B: 
fragmentation x-axis shorten for comparison. 

4.5 Discussion 

We showed various different crucial responses of hedgehogs to habitat change that could affect 

the survival of individuals. Consistent with our hypotheses, we found an influence of both 

stressors (fragmentation and transient change) on hedgehog space use, behaviour, circadian 

rhythm and nesting. Additionally, we showed differences of hedgehog responses to the two 

different stressors. With regard to the transient environmental change caused by the festival, 

both sexes decreased the size of the area utilized during the study, their movement speed and 

search intensity, while only females adjusted their space use in the fragmented habitat(1). 

Hedgehogs avoided the festival area (1) and changed their behaviour partly and modified their 

circadian rhythm (2, 3). The permanent, more static perturbation of fragmentation showed 

different adjustments (2, 3). These might be hints that hedgehogs can adjust to permanent 

stressors. It could also be possible that they behave in a maladaptive way, which could lead to 

negative fitness consequences. Surprisingly, stressors seemed to affect females differently than 

males. Males showed to be more active in avoiding or coping with the changes while females 

A 

B 
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seemed to be less able to cope with the changes although they were similarly affected (4). These 

findings could help to understand the role of hedgehogs and their future in the on-going 

urbanisation and if they are resilient to on-going declines in habitat space and increasing 

frequency of acute disturbances.  

4.5.1 Movement Data 

Area used  

We found our results of area used nightly by hedgehogs reflect earlier findings on home ranges 

in residential areas (Dowding et al., 2010) and in other hedgehog species in suburban habitats 

(Schoenfeld and YOM-TOV, 1985), but are smaller than findings from other studies (compare 

Boitani and Reggiani, 1984; Kristiansson, 1984; Morris, 1988; Reeve, 1997; Rautio, Valtonen and 

Kunnasranta, 2013). It should be noted that in these studies which are contradicting to our 

results, a 100 % MCP was calculated, which is by definition bigger than our used 95% MCP and 

we used daily data while data from longer tracking periods was used in most these studies. 

Furthermore, it is important that home range size is not a constant value over time and earlier 

research showed large differences in individuals when comparing two following years (Dowding 

et al., 2010). We confirmed the general knowledge that males used larger areas than females (see 

Abu Baker et al., 2017). In our fragmented area, however, both sexes used at night a similar size 

of the area. This means that those individuals have higher energy consumption than their 

counterparts in less fragmented habitats. This could be especially important for the reproductive 

success of the females because the roamed area by the males was not bigger than of the 

individuals in our control. In a study on hedgehogs in rural habitats it was found that hedgehogs 

living further away from settlements had higher energy expenditure. The authors in the study 

concluded that this could be related to the longer distances hedgehogs have to cover (Pettett, 

Johnson, et al., 2017). In the same study, it was described that hedgehogs may restrict their 

movement in the presence of predators (badgers). It has to be evaluated if the trade-off between 

spatial fragmentation, high energy expenditure and advantages of close proximity to settlements 

and predator avoidance is changing (Pettett, Johnson, et al., 2017). 

Speed and search intensity 

Our reported values for movement speed seem low but since we included inactive and active 

data, this was no surprise and we report similar values to the mean speed of Ethiopian 

hedgehogs of 0.039 m/s (mean speed over sex and season). The differences are substantial 

enough to imply that hedgehogs in fragmented areas move on average 20 % times faster than in 

the unfragmented undisturbed habitat, a factor relevant for total energy turnover (Pettett, 
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Johnson, et al., 2017). In former studies, it was shown that hedgehogs move faster on larger 

streets, which could mean that hedgehogs on concrete paths like in the Tierpark also increase 

their speed if they use them (Bontadina, 1991). Commuting between foraging patches could be 

the reason for the higher speed in fragmented habitats, while the slow movement in hedgehogs is 

more related to foraging (Zingg, 1994; Braaker et al., 2014). This interaction could also lead to 

higher variance in the search intensity in the fragmented habitat. The higher values in search 

intensity during the festival could be a sign that hedgehog had to search for food more intensely 

on not optimal food patches or are related to the higher vigilance behaviour (lower speed) as 

response to new disturbances. While we find distributions that seem to be different and could 

show a general different behaviour within the urban matrix, having the active and inactive data 

of a relatively low number of individuals could influence the results of the turning angles. 

However, the movement of hedgehogs is influenced by anthropogenic disturbance and this is 

consistent with studies on other mammals, where a negative effect on long distance displacement 

was found (Tucker et al., 2018). 

Shift 

The detected shift in the area used nightly is a clear indication of the avoidance of the festival 

area. The open meadow which hedgehogs usually use to forage was blocked by visitors during as 

well as before and after the festival by workers. Hence, hedgehogs stayed longer, even up to the 

whole night, at the edge of the park. In some nights, they did not even leave the bushes in which 

their nests where located. The raw data suggest that although a shift of the used area seems to be 

normal from time to time. However, during the festival period hedgehogs avoid the former 

utilized areas (Supplementary Figure 4.5 and Supplementary Figure 4.6). Such a response was 

already shown for hedgehogs in farmland as a reaction to dramatic changes in resource quality 

(Doncaster and Krebs, 1993). In a similar semi-experimental approach, Koalas were before and 

during a music festival tracked and aversive changes in their behaviour detected (Phillips, 2016; 

FitzGibbon et al., 2017). In these situation it is crucial that space and escape routes are 

implemented to enable for animals the avoidance of the stressors. 

4.5.2 Behaviour 

Behavioural changes can be seen as an adjustment to a change, regardless of seasonal changes or 

during the ontogeny of an individual. Most of the time behavioural change and especially rapid 

changes can be a signal of disturbance (Berger, 2011). In our study, we observed a change in the 

hedgehogs curling-up or roll-up behaviour. Normally, this behaviour is a reaction to disturbance, 

even though it starts with spine erection and lead to a complete roll up if the animal is further 



Distinguishing spatial from temporal effects in disturbance biology: Hedgehogs in the 
urban matrix of habitat fragmentation and noise pollution 

105 

stressed (Reeve, 1994). In the interpretation of the data, we consider the possible 

misidentification between the resting and rolled up behaviour. Additionally, we have to consider 

the huge difference in the size of the 95 % confidence interval in the comparisons between two 

different individual groups (pre-festival vs. fragmented). It seems and was also expected that the 

comparison of different individual groups adds uncertainty to the analyses. For example, the 

mean proportion of identified rolled up behaviour of the females in the fragmented habitat was 

higher than the values from both the control and the festival (Supplementary Figure 4.8). 

However, only the comparison between the pre-festival and the festival was statistically different. 

In both cases, it could be possible that animals in the festival and the fragmented habitat 

encountered more situations that led to an increase of rolling-up behaviour. Visitors and overall 

noise of the festival as well as natural predators like foxes and badgers that roam in the 

fragmented habitat could cause it.  

After the increase of the space used by females in the fragmented habitat an increase in walking 

was expected and measureable in female hedgehogs (however, statistically not significant). This 

again shows the need for a higher energetic investment when moving further distances (Pettett, 

Johnson, et al., 2017). Interestingly, in male hedgehogs, walking was slightly higher during the 

festival phase than in the pre-festival phase (mean ± conf.int 0.237 % ± 0.023 % vs. 0.241 % ± 

0.022). This could indicate an active avoidance of the festival, maybe to avoid the festival 

(Supplementary Figure 4.9). A couple of male hedgehogs left the festival area during the festival 

and returned a few days later. Thus, the population signal could be influenced by a couple 

individuals. This confirms that hedgehogs move out of unfavourable habitats and thus, spatially 

avoid disturbances if necessary (Doncaster, Rondinini, and Johnson 2001).  

The analyses of the DFC revealed the detailed analyses of the behaviour. This supports previous 

studies, which proved the DFC to be a tool to detect disturbance (Berger, 2011). This means that 

even in without behavioural validation of ACC data, old data can be analysed. As expected, in 

both sexes DFC decreased in the face of acute habitat change, showing a change in the internal 

rhythm of the animals, while there was no change detected in regard to the permanent (chronic) 

habitat change. Interestingly, we found the highest values in fragmented habitat changed in 

females (statistically not significant), which could mean that it is easy to maintain a regular 

activity in fragmented Tierpark and that the animals adjusted their biological rhythm. The 

fragmented values of the males had a higher variation displaying higher individual differences 

during this time of the year, which could be expected because male hedgehogs behave 

unpredictable during and shortly after the mating season (Rautio, Valtonen and Kunnasranta, 
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2013). In general, high values especially for nocturnal animals are expected and thus low DFC 

values indicate disturbance by stressors, disease but also parturition (Langbein, Scheibe and 

Eichhorn, 1998; Krone, Berger and Schulte, 2009). In our study some of the females gave birth 

to hoglets during the study period, this alone could influence the DFC. For a nocturnal animal 

like hedgehogs, a change in the circadian rhythm means exposure to even more stressors, which 

could lead to impairments of fitness. To verify DFC as tool to asses stress in wildlife a 

combination of energetic and hormonal assessment could give needed validation. 

4.5.3 Nesting 

Resting is important to recover and save energy. Hedgehogs either reuse or build a new nest to 

rest every day. This means more energy is invested into building a new nest instead of reusing a 

previously built nest. We recorded much higher turnovers of nests in our short periods from up 

to 40 days than rural hedgehogs in rural Irish populations (mean males 7.5 females 4.9 nest our 

study vs. both sexes 2.5; Haigh, O’Riordan and Butler, 2012), however, similar ranges to 

hedgehogs on a golf course in the suburbs of London (males 5 - 10 vs. 2 - 15, females 2 - 6 vs. 

2 – 6; Reeve and Morris, 1985 Supplementary Table 4.10). Here, we show that females use less 

nesting sites compared to males in the same time frame and thus find the same results than 

previous studies (Reeve and Morris, 1985, Rautio, Valtonen and Kunnasranta, 2013). While we 

are lacking survival analyses of nesting studies, more data even of published projects with daily 

recordings could be reanalysed to find a baseline for European hedgehogs. 

4.5.4 Conclusion and outlook  

Overall, it is surprising that males reacted particularly stronger to the habitat change than females 

(nesting and behaviour). However, females had to care for hoglets which could impede their 

flexibility to react to the acute change, while males could move freely and thus, avoid the festival 

actively or facilitate the new circumstances. This individual behaviour enhances the behavioural 

flexibility of the population and should be approached if enough data is available (Hertel, 

Swenson and Bischof, 2017; Santini et al., 2018). Having the details of individual coping 

strategies can help to understand reactions to specific disturbances. In the anthropogenic 

changed environment, it is hard to observe the “true” behaviour of species. Some species adjust 

their behaviour to suboptimal habitats to avoid direct conflicts (cf. Refugee Species, Kerley, 

Kowalczyk and Cromsigt, 2012; Kuemmerle et al., 2012). For hedgehogs in the urbanized habitat 

it is possible that the observed behaviour (pre-festival) already is an adjusted suboptimal 

behaviour to urban environments, which on itself could lead to extinction. However, the shown 

reactions to the acute stress clearly indicate a disturbance which would worsen the situation. The 
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adjustment observed in the permanently fragmented habitat (higher speeds and increased area) 

of the females could facilitate adaptation to better and energetic more efficient locomotion 

(Wong and Candolin, 2015). The advanced technologies together with the biological 

understanding of species enable us to gain a deeper insight into the dynamics of ecosystems 

(Kays et al., 2015). The technical viewpoint and amount of data could bias the biological 

meaning easily. Thus it is important to combine close population monitoring and technological 

remote sensing data (Hebblewhite and Haydon, 2010; Shamoun-Baranes et al., 2012). The 

combination of GPS, ACC and behavioural data enabled us to understand the reaction and 

coping strategies of hedgehogs on a population level. It indicates behavioural flexibility, which 

could explain why an enigmatic old species like hedgehogs still exists, and that the appropriate 

management can help to recover the population numbers. We showed that small ground-

dwelling animals can be used to disentangle the spatiotemporal influences of acute and 

permanent anthropogenic habitat changes. Our results show that humans and nature can share 

cities if space for natural dispersal of flora and fauna is ensured. 
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Figure 4.6: Hedgehog squeezing under the VIP Container of the Lollapalooza festival 
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Simple Summary: ‘Mega-events’ like concerts or festivals can still impact wildlife even when 

protective measures are taken. We remotely observed eight hedgehogs in a Berlin city park 

before and during a music festival using measuring devices attached to their bodies. While the 

actual festival only lasted two days (with about 70,000 visitors each day), setting the area up and 

removing the stages and stalls took 17 days in total. Construction work continued around the 

clock causing an increase in light, noise and human presence throughout the night. In response, 

the hedgehogs showed clear changes in their behaviour in comparison to a 19 day period just 

before the festival. We found, however, that different individuals responded differently to these 

changes in their environment. This individuality and behavioural flexibility could be one reason 

why hedgehogs are able to live in big cities. 

Abstract: Understanding the impact of human activities on wildlife behaviour and fitness can 

inform their sustainable management. We wanted to identify behavioural responses to 

anthropogenic stress in an urban species during a semi-experimental field study. We equipped 

eight urban hedgehogs (Erinaceus europaeus; four per sex) with biologgers to record their 

behaviour before and during a mega music festival (2 x 19 days) in Treptower Park, Berlin. We 

used GPS to monitor spatial behaviour, the VHF-loggers to quantify daily nest utilisation, and 

accelerometers to distinguish between different behaviours at a high resolution and calculate 

daily disturbance (using Degrees of Functional Coupling). The hedgehogs showed clear 

behavioural differences between the pre-festival and festival phases. We found evidence 

supporting highly individual strategies, varying between spatial and temporal evasion of the 

disturbance. Averaging the responses of the individual animals or only examining one 

behavioural parameter masked these potentially different individual coping strategies. Using a 

combination of different minimally-invasive biologger types, we were able to show a high inter-
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individual behavioural variance of urban hedgehogs resulting from an anthropogenic 

disturbance. Such behavioural responses might be a precondition to persist successfully in urban 

environments. 

Keywords: accelerometer, anthropogenic disturbance, behavioural flexibility, behaviour 
recognition, Erinaceae, non-invasive stress detection, ODBA, urban wildlife 

5.1 Introduction 

Human activity has a significant impact on biological diversity and the persistence of wildlife 

populations [1]. One example of such human activity is the global process of urbanization, which 

leads to fast and drastic environmental changes for wildlife [2–4]. Some species avoid urbanized 

landscapes while others thrive and persist in them [5]. Urban areas are not only characterized by 

an altered landscape but are also hotspots of human activity that may constrain the behavioural 

repertoire of urban wildlife [6]. A detailed understanding of how human activity impacts urban 

wildlife populations is essential for conservation and wildlife management and for the resolution 

of human-wildlife-conflicts.  

Studying wildlife responses to human disturbance under standardized lab-conditions allows 

inference about causality but often lacks ecological realism. Natural conditions and the 

complexity of ecological processes are difficult, if not impossible, to integrate into lab-studies [7]. 

In comparison, experimental field studies include a high level of ecological realism, but often 

cannot identify causality and face many methodical challenges. One challenge is being able to 

recognize, understand, and clearly distinguish the various environmental factors that affect 

animal behaviour. Often, there will be a complex set of ecological relationships which cannot be 

controlled by the researcher. However, recent advances in biologging, to remotely monitor 

animal behaviour and physiology, have removed many of the former limitations of field studies. 

It is now possible to record the behaviour of free-living wild animals by logging them with high-

resolution 3D accelerometers. These data can be used to distinguish different behaviours, as well 

as to evaluate the rhythmic structure of behaviours.  

Behavioural rhythms have evolved as adaptations to the environment and enable organisms to 

be active at the times most suited to their physiology or ecology. Aberrations from these patterns 

can result in impairments of fitness. In this study, we focus on a particularly important rhythmic 

structure, the circadian rhythmicity of activity. Analysis of circadian rhythmicity of activity can be 

measured using the Degree of Functional Coupling (DFC) which can indicate de-

synchronisation of general behaviour patterns caused by stress, illness or disturbances [8,9], and 

so is well suited to understand the impacts of human activity on urban wildlife. 
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The European hedgehog (Erinaceus europaeus) is protected in many parts of Europe but has still 

experienced serious and continuous declines in the last decades [10,11]. Although hedgehogs 

originally inhabited rural mosaic structures, they now have higher population densities in urban 

areas [11,12]. For the protection and management of this species, it is therefore important to 

assess the adaptive capacity and limits of hedgehogs to urban conditions.  

We measured the effects of a music festival in a city park on the behaviour of urban hedgehogs 

to investigate the hedgehog's side of this human-wildlife-conflict. The biology of the hedgehog 

can make behavioural studies difficult [13]. They are nocturnal, small and keep hidden during the 

day, which makes the use of animal-borne loggers all the more valuable. In this study, we work 

with easy-to-use, non-invasive loggers to infer the stress responses of animals (which are usually 

estimated by physiological data) by estimating their behaviour changes to a serious stressor 

through the combination of different loggers and differentiated analysis of the measured data. 

We recorded the spatiotemporal behaviour of hedgehogs and analysed it on a fine temporal scale 

(minutes), before and during a large festival. A music festival in the city is not only a site of 

human activity but also creates a sudden and drastic change in the environment. Because the 

festival site was never previously used for such an event it is unlikely that the hedgehogs would 

be accustomed to such a disturbance. We hypothesise that hedgehogs change their spatial-

temporal behaviour in response to the festival event. However, behavioural responses are often 

individual- and sex-specific which should be considered when studying the effects of 

anthropogenic disturbances [14,15]. As hedgehogs may adjust their behaviour to avoid contact 

with human disturbance we predict a general decrease in the area used nightly and DFC during 

the festival but individual responses in behaviour and activity may vary. 

5.2 Materials and Methods  

5.2.1 Study Area 

Fieldwork was conducted from July to September 2016 within an urban park (Treptower Park) 

of 88.2 ha, in southeast Berlin, Germany (52.48846°N, 13.46974°E). Treptower Park is open to 

the general public and contains lawns of short grass, variable shrub density, gravel footpaths, a 

playground and a monument site. The park is surrounded by urban pedestrian areas, tarmacked 

streets and parking areas to the east and south and is bounded by the river Spree to the north 

and a railway embankment to the west. Within this urban park, streets, fences and the railway 

embankment create obstacles to hedgehog movement. 
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5.2.2 Semi-experimental design 

We defined the pre-festival phase as the 10th of August until the 28th of August; while the 

festival phase lasted from the 29th of August until the 16th of September. Festival phase 

consisted of three phases: construction, the actual festival and deconstruction. The actual 

festival, with about 140,000 visitors, took place on the 10th and 11th of September. The 

construction of the festival started on the 29th of August and the deconstruction concluded on 

the 16th of September. In total there were 19 days for the pre-festival phase and 19 days for the 

festival phase. 

During the construction phase, the whole area was fenced and big mats of aluminium and rubber 

were placed throughout the park to allow trucks to drive in. Several stands and the two main 

stages were built in our sample area which was a 16 ha section of the whole park. The festival 

ground extended to other parts of the park which were separated from our sampling area by a 

major four-lane road, which was out of use during the festival. All bushes were fenced to protect 

wildlife from the festival visitors during the festival phase. During the actual festival, from 10:00 

am to midnight, visitors could enter the festival area and music was played from 10:30 am to 

23:00 pm on different stages accompanied by light shows. Immediately after the end of the 

actual festival event, the deconstruction of all fences, stages and mats started. 

Table 5.1: Animal identification number (ID), sex and body mass (at the date of logger attachment) of the studied 
hedgehogs 

Animal ID Sex Body mass [g] 

01_2016 m 1060 

02_2016 f 1090 

08_2016 f 795 

09_2016 m 830 

13_2016 f 725 

17_2016 f 1480 

19_2016 m 890 

21_2016 m 1015 

5.2.3 Study animals and logger attachment 

At the beginning of August 2016, we carried out two-night surveys at least one hour after sunset 

to find active hedgehogs by spotlighting (P14.2, LED Lenser, Solingen, Germany). Each 

hedgehog was marked with five yellow shrink-fit plastic tubes on the spines [16]. The tubes were 

numbered to allow individual identification during recapture [17]. 

We equipped 17 hedgehogs with VHF transmitters. On the 9th of August, we selected eight out 

of the 17 hedgehogs (four of each sex) and also equipped them with GPS/ACC loggers (E-obs 

GmbH, München, Germany) using a backplate system described by [18]. We only used 
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hedgehogs with the required body mass of 600g to meet the recommended 5 % body mass rule 

recommended by [19] (Table 1). 

Once every week during the study, we weighed all hedgehogs and inspected them for any health 

problems. On these occasions, we also recharged the data loggers. Nesting behaviour was 

recorded every day by locating the VHF signals of each of the 17 VHF-logged hedgehogs (TRX-

1000S, Wildlife Materials Inc., Murphysboro, IL, USA, or Wide Range Receiver AR 8200, AOR 

Ltd., Tokyo, Japan). On the 20th of September, we removed all loggers, VHF transmitters and 

back plates. 

5.2.4 Logger setup 

GPS positions were taken from 7:00 pm to 7:00 am in 5 min intervals, with bursts of five points 

to increase accuracy. The VHF transmitters sent signals continuously throughout the whole 

study period. Acceleration data was recorded alongside the GPS data by the e-obs tags. These 

accelerometers were programmed to record a short burst of high-resolution data. We chose a 

sampling frequency of 100 Hz per axis for the present study. All three available axes were 

measured simultaneously. For individuals 01_2016 and 19_2016 a burst was 2.64 s long resulting 

in 264 measurements per axis. All other individuals were recorded with 2.5 s long bursts with 

250 measurements per axis. The burst length is only important for three of the 25 calculated 

predictors used for the model (see ‘Behavioural prediction and budget’ below). Bursts were 

recorded every minute. 

To account for missing data caused by power loss or logger malfunctioning we removed all dates 

with less than 1430 (1440 for complete 24 h) measurements between 0:00 am and 11:59 pm from 

the data set. This ensured that only days with the same amount of recordings during both day 

and night were included, which avoided any bias towards behaviours that only occurs during a 

specific time of day. 

5.2.5 Data Analysis 

Spatial data analysis 

Because of large fluctuations in the co-ordinates of some GPS points, we excluded all points that 

were more than 1000 m away from the study site. We then calculated the average of all remaining 

points per time event. Outliers of more than 2 m/s speed from one location to the next location 

were excluded. We grouped the remaining points for each night to calculate the used areas from 

the evening of one day to the next morning. 
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We calculated used areas for each night and both phases, pre-festival and festival. We computed 

the Kernel density estimation 50 % (KDE50) for each phase separately using the functions of 

the adhabitatHR package [20] in R [21] (version 3.5.1, R Core Team, 2018) and R Studio [22]. 

The KDE50 is used to evaluate the core area used by the hedgehogs per night. 

We monitored day nests for all 17 radio-tagged hedgehogs (nine males, eight females, including 

the individuals from Table 1) from 10th of August until 21st of September (five days after the 

festival). We calculated the nest utilization (survival Kaplan-Meier-method) period probability 

using R (package ‘survival’); we then used the log rank test (Mantel method, package ‘coin’) to 

test the equality of the utilization period distributions between non-festival (before and after) and 

festival phase for each sex separately [23]. 

Acceleration data analyses 

Behavioural prediction and budget 

For behavioural prediction, we used a supervised machine learning algorithm which uses data of 

known behaviour to train and test the model. We took the data of known behaviours used for 

the model from a pre-study. In this pre-study, hedgehogs were logged using the same protocol as 

the present study and observed in June and July 2016 over several nights, using six hedgehogs 

(three females, three males) from the same study area in the Treptower Park. In total four 

behaviours were considered for the analysis of these animals: resting, defined as not moving 

regardless of the body posture; rolling up, defined as curling-up in defense to make a tight ball; 

walking, defined as slow locomotion; and running, defined as fast locomotion [24].  

The data in this pre-study were recorded in bursts of 2.64 s length with 100 Hz for each of the 

three axes resulting in 264 data per burst and axis. To build the model, all six individuals were 

pooled into one data set. The model is based on summary statistics calculated from the raw 

acceleration data using the package accelerateR [25]. For this model, we computed the following 

set of predictors: mean, standard deviation, inverse coefficient of variation, weighted mean of the 

autocorrelated power spectrum, variance, kurtosis and skewness all for each axis separately, and, 

from a combination of all three axes: q [26], pitch, roll [27] and overall dynamic body 

acceleration (ODBA) [28]. 

We choose the Support Vector Machine (SVM) algorithm to classify the predictors for each 

burst. The SVM represents the predictors in a multi-dimensional space. To separate data points 

of different classes from each other, a hyperplane is constructed between points of two classes. 

Points are then classified according to their relative position to the hyperplane [29]. This method 
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was designed to work with binary data. By joining multiple SVMs it is possible to work with data 

that have more than two classes [30]. In the present study, we considered three classes: resting, 

balling up and locomotion. To account for behaviours that are not included in the model but 

might occur in hedgehogs, a threshold was set for the SVM. A prediction was only considered 

reliable when the probability of belonging to a class exceeded 0.7. Otherwise, the behaviour was 

classified as ‘other’ behaviour. 

The recall (True positives / (True positives + False negatives)) and precision (True positives / 

(True positives + False positives)) [31] were calculated as well as the proportion of predictions 

that were classified as ‘other’ to evaluate the model after a leave one out cross validation. We 

used the package „e1071’ [32] for the implementation in R. 

We prepared the data for the animals of the present study in the same way as data from the 

model hedgehogs. In addition, we tested the raw data for missing measurements within the 

bursts. We removed all bursts where less data was recorded than expected under the burst 

settings. We then used the SVM model to assign a behaviour prediction to every burst and its 

corresponding timestamp. The probability threshold of 0.7 was used to assign the behaviour 

‘other’ to all bursts that did not exceed the threshold. 

We considered the behaviour of every individual for the pre-festival and festival phases 

separately. To test for changes in behaviour, we compared the proportion of every behaviour 

class between the pre-festival and festival phase with a Fisher’s exact test with the fisher.test() 

function in R. 

Daily activity pattern 

We calculated the accumulated standard deviation (aSD) by summing up the standard deviation 

from all three axes for every burst. Using aSD, we calculated the index of diurnality (DI) based 

on the relative level of activity during daylight compared to night-time for each individual on a 

given day, with day starting at civil dawn. We used DI after [33] in which the different time spans 

of day or night are taken into account. DI ranges between -1 (absolutely nocturnal) and 1 

(absolutely diurnal). We defined civil dawn and civil dusk as the border between day and night; 

date-specific times for civil twilight were obtained from the National Oceanic & Atmospheric 

Administration (NOAA, www.esrl.noaa.gov). 

Restless phases during the day, such as those triggered by loud music during the festival, would 

increase the proportion of daytime activity and the DI would thus give an incomplete picture of 

the influence of the festival on the activity pattern of the hedgehogs. We, therefore, calculated 
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the time span between activity onset and civil dusk (TSdusk). The mean of the aSD was used as a 

threshold to distinguish between generally active (> mean aSD) and passive (< mean aSD) 

behaviour. 

Overall dynamic body acceleration (ODBA) 

The ODBA was introduced as a proxy for energy expenditure [34,35]. At its basis, it is a 

measurement of general animal body movement irrespective of behaviour. It was used to map 

the activity of the animals in order to compare the general activity between the two phases. The 

ODBA values were taken from the SVM model. To represent whole days the ODBA values for 

every 24 hour period (0:00 am - 11:59 pm) were summed up separately for every individual. 

Stress detection 

Degree of Functional Coupling (DFC) is a parameter to measure the synchrony of (internal) 

cyclic behaviour and the (external) environmental 24 h period, expressed with a value between 0 

(no synchrony) and 1 (maximal synchronized) [8]. 

We used the aSD to calculate DFCs (see section Daily activity pattern). Following the protocol 

of Berger [8] et al. (2003), the time series was auto-correlated in order to filter out noise and 

enhance rhythmic components and, after a Fourier transform, was used to break the time series 

down into its rhythmic components described by the percentage of each component in the 

original time series. The longest Fourier period tested covers the entire length of the auto-

correlation function (here three days); the shortest Fourier period tested is twice the sampling 

interval (here 2 minutes). The Degree of Functional Coupling is calculated by dividing the 

Fourier transformation components that harmonize with the 24-hour rhythm by the entirety of 

the Fourier spectrum. To gain an adequate statistical power of the 24 hour period, DFCs were 

calculated for time series of three days using a moving average (first data set covers day 1 to 3, 

second data set covers day 2 to 4, and so on). The resulting DFCs were assigned to the last day 

of the moving average (day 3 for the first set, day 4 for the second set, and so on). 

Statistical analysis 

We compared the area nightly used, DI, TSdusk, ODBA and DFC between the pre-festival and 

the festival phases with a Wilcoxon rank sum test using the wilcoxon.test() function in R. 

Statistical comparisons for nest utilisation and behaviour budget are explained in more detail in 

the respective sections. 



Music festival makes hedgehogs move: How individuals cope behaviourally in response to 
human-induced stressors 

122 

5.3 Results 

5.3.1 Spatial Results 

The size of mean area nightly used (measured with KDE50) decreased in all eight hedgehogs 

during the festival phase. The Wilcoxon rank sum test calculated for each individual showed that 

differences in five out of eight hedgehogs were significant (08_2016, 09_2016, 17_2016, 

19_2016, 21_2016)(Figure 5.1). 

 
Figure 5.1: mean values with a confidence interval for nightly Kernel density estimation 50 % (50KDE) areas of eight 
hedgehogs in the pre-festival and festival phase (significant differences are marked by *, Wilcoxon test (Table S1)). 
Female hedgehogs are represented as circles, male hedgehogs as triangles. Each individual is represented by a unique 
colour.  

During the pre-festival phase, the probability of a nest being re-used the next day was 66.1 % for 

females and 57.8 % for males. During the festival, nests of male hedgehogs were used for a 

significantly shorter time (Log-Rank, N = 156, Mantel, Z = -2.3327, p-Value = 0.02). The 

probability of using a new nest was ~12 % lower in males (57.8 % vs. 45.5 %). No nests were 

used for longer than eight days. Values for females were similar in both phases. Differences were 

however not significant for any individual (Log-Rank, N = 88, Mantel, Z = 0.49502, p-value = 

0.62, Figure 5.2). 

Daily nest checks showed that individuals 02_2016 and 13_2016 gave birth between 22nd of 

August and the 28th of August and 29th of August and the 4th of September respectively. 
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Figure 5.2: Nest utilization period probability of females and males during pre/after-festival and festival phase of 17 
hedgehogs (nine males, eight females) p values coming from Log-rank test females: Log-Rank, N = 88, Mantel, p-
value = 0.83; males: Log-Rank, N = 156, Mantel, p-Value = 0.02. 

5.3.2 Model evaluation for behaviour prediction 

The hedgehog behaviour model considered three different behaviours: immobile, balling up, and 

locomotion. The final data set consisted of 197 bursts for each of the three behaviour classes. 

The leave one out cross validation showed high values for recall and precision (Table 5.2). A 

total of 73 (12 %) of the 591 bursts were classified as ‘other’ behaviours due to the probability 

threshold of 0.7. 

Table 5.2: Recall and precision [31] of the hedgehog model 

 
Recall Precision 

Immobile 0.77 0.88 
Balling up 0.78 0.90 

Locomotion 0.91 0.93 

5.3.3 Behaviour prediction 

Burst with missing data occurred only in individual 13_2016 where we removed a total of nine 

bursts. A programming error for the tag on individual 02_2016 led to the removal of five days of 

data at the beginning of the study (10th of August 2016 - 14th of August 2016). Finally we 
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removed a total of three days from the pre-festival phase for all hedgehogs except individuals 

02_2016 (nine days) and 19_2016 (four days). The number of removed days for the festival 

phase ranged between 3 and 6 days. The tag of 09_2016 broke down after the 12th of September 

2016 and therefore we removed this individual completely from the analysis as there are only 

three days with more than 1430 recordings per 24 hours of recording in the festival phase. 

5.3.4 Behaviour budget 

Hedgehog behaviour differed between the two phases of the festival (Table 5.3). Odds ratios 

range from 0.512548 to 1.814369. Immobile behaviour decreased in four individuals while three 

individuals showed no difference. Balling up increased in all but two individuals. Locomotion did 

not change for all the males while two females increased and two decreased locomotive 

behaviour. Because of the nature of the behaviour class ‘other’, an interpretation of these 

behaviours is not possible. For the sake of completeness, it ‘other’ behaviour will be reported but 

not discussed further. 

Table 5.3: Changes in the behaviour during the festival phase in comparison to the pre-festival phase. Values represent 
the odds ratio for every behaviour separately with the corresponding p-value calculated with the Fisher's Exact Test. 
Odds ratios smaller than 1 indicate a decrease in the behaviour in the festival phase while an odds ratio greater than 1 
indicate an increase.  

Animal ID Immobile Balling up Locomotion Other 

01_2016 
0.808 

p = 2.337e-15 
1.47 

p < 2.2e-16 
0.972 

p = 0.2048 
0.862 

p = 8.251e-15 

02_2016 
0.956 

p = 0.1839 
0.513 

p < 2.2e-16 
1.366 

p < 2.2e-16 
1.44 

p < 2.2e-16 

08_2016 
0.623 

p < 2.2e-16 
1.367 

p < 2.2e-16 
0.863 

p = 3.896e-09 
1.027 

p = 0.1969 

13_2016 
0.963 

p = 0.1525 
0.918 

p = 0.0002304 
1.652 

p < 2.2e-16 
0.768 

p < 2.2e-16 

17_2016 
0.793 

p < 2.816e-15 
1.814 

p < 2.2e-16 
0.676 

p < 2.2e-16 
0.841 

p < 2.2e-16 

19_2016 
0.847 

p = 1.254e-06 
1.238 

p < 2.2e-16 
0.969 

p = 0.1972 
0.855 

p = 5.468e-14 

21_2016 
1.003 

p = 0.9202 
1.066 

p = 0.001328 
1.002 

p = 0.939 
0.933 

p = 0.000685 

5.3.5 Daily activity pattern 

All studied hedgehogs were strictly nocturnal showing negative diurnality indices. Six out of eight 

hedgehogs reduced their DI and two animals (17_2016 and 19_2019) showed an increased DI 



Music festival makes hedgehogs move: How individuals cope behaviourally in response to 
human-induced stressors 

125 

during the festival. Only one hedgehog showed a significant decrease (Wilcoxon test: W = 108 p-

value = 0.04699) (09_2016) (Figure 5.3).  

 

Figure 5.3: Mean values with confidence interval for the diurnality index DI of eight hedgehogs in the pre-festival and 
festival timeframe (significant differences are marked by *, Wilcoxon test cf. Supplementary Table 5.1). Female 
hedgehogs are represented as circles, male hedgehogs as triangles. Each individual is represented by a unique colour. 

During the festival phase, all hedgehogs shifted their activity onset to a later time compared to 

the pre-festival phase, shown by the increased TSdusk (zero marks the time of civil dusk, 

negative TSdusk values represent time before civil dusk, positive TSdusk values represent time 

after civil dusk). For five out of eight hedgehogs (01_2016, 08_2016, 13_2016, 19_2016, 

21_2016) these differences are significant, indicated by a Wilcoxon rank sum (Figure 5.4). 
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Figure 5.4: Mean values with confidence interval for the time span between activity onset and civil dusk (TSdusk) of 
eight hedgehogs in the pre-festival and festival timeframe (significant differences are marked by *, Wilcoxon test 
(Table S1)). Female hedgehogs are represented as circles, male hedgehogs as triangles. Each individual is represented 
by a unique colour. 

5.3.6 ODBA analysis 

Mean daily ODBA values were similar between the pre-festival and festival phase for most 

hedgehogs (Figure 5.5). Two individuals (08_2016, 17_2016) show a significant difference 

(Wilcoxon test: W 0 174 p-value = 0.001498, W = 162 p-value = 0.01007). Both individuals 

showed lower mean daily ODBA during the festival compared to the pre-festival phase. 

Individual 09_2016 was also removed from the ODBA analysis for reasons explained in section 

behaviour analysis.  
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Figure 5.5: Mean values with confidence interval for the Overall Dynamic Body Acceleration (ODBA) of seven 
hedgehogs in the pre-festival and festival timeframe (significant differences are marked by *, Wilcoxon test (Table 
S1)). Female hedgehogs are represented as circles, male hedgehogs as triangles. Each individual is represented by a 
unique colour. 

5.3.7 Stress detection 

During the festival phase, six out of eight hedgehogs decreased their DFC. For five out of eight 

hedgehogs these differences were significant, indicated by a Wilcoxon rank sum (08_2016, 

09_2016, 13_2016, 19_2016, 21_2016) (Figure 5.6). 
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Figure 5.6: Mean values with confidence interval for the Degrees of Functional Coupling (DFC) of eight hedgehogs in 
the undisturbed and disturbed timeframe (significant differences are marked by *, Wilcoxon test (Table S1)). Female 
hedgehogs are represented as circles, male hedgehogs as triangles. Each individual is represented by a unique colour. 

5.4 Discussion 

We showed that all hedgehogs change their spatial-temporal behaviour in at least one of our 

study parameters during a large disturbance event. Following our predictions the area used 

nightly (KDE50) and DFC decreased during the festival. We were able to identify individual 

changes in the behavioural budget due to the festival. We discuss the different parameters below. 

5.4.1 Spatial behaviour 

We demonstrated a decrease in the area used nightly of urban hedgehogs during the festival. Our 

results are consistent with the recent meta-analysis of [36] reporting a widespread decrease in the 

mobility of mammals living in highly disturbed environments. They suggested that animals living 

in built-up landscapes were confined to smaller ranges due to limited movement capacity. During 

our study, movement limitations set by the park boundaries for hedgehogs were unchanged, thus 

a decrease in the area used nightly during the festival phase seems to be an effect of avoidance of 

disturbance caused by the festival. 

In general, hedgehogs regularly change their nests [13, 37]. However, this was the first time a 

survival analysis was performed on the nesting behaviour so there is no relatable data for the pre-

festival phase. Building additional nests requires a time investment to find appropriate nesting 
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sites and gather material, which could otherwise be used for foraging. Nevertheless, males 

changed their nests more often in the festival period. Because nesting behaviour is an important 

part of hedgehog behaviour, a change could be considered as a drastic reaction to the festival. 

Nests used by the females were used longer which could be explained by the fact that some of 

them gave birth and thus were bound to their nests. Changing nests with offspring is even more 

energetically costly than changing by themselves. Highly disturbed mothers might eat their 

offspring [13] and then change their nest. 

5.4.2 Behaviour analysis 

In contrast to spatial behaviour, hedgehogs did not change their individual behaviours in the 

festival phase relative to the pre-festival phase in a uniform way. Due to the nocturnal behaviour 

of hedgehogs, any behavioural observation would usually require an observer to be close to the 

animal to classify behaviour. This, however, could already lead to an influence on hedgehog 

behaviour [38]. This study is the first study to remotely record hedgehog behaviour, and there are 

no references as to how hedgehogs behave in the absence of a human observer.  

Four hedgehogs reduced the amount of immobile behaviour while the three others showed no 

change (Table 5.3). The interpretation here is difficult because the situations in which a 

hedgehog may become immobile can be quite different. Hedgehogs will be classified as 

immobile if they stop walking during foraging or when they are in their nests sleeping during the 

daytime. The reduction in immobile behaviour here could mean a different sleeping posture that 

is more similar to balling up and therefore treated as such by the SVM. All four individuals that 

show reduced immobile behaviour also showed increased balling up behaviour. In addition to 

these four individuals, two other hedgehogs showed an increase in balling up during the festival. 

Nevertheless balling up is a defensive behaviour which is favoured by hedgehogs over moving 

away from a threat [13]. In a case where construction workers and the music event are perceived 

as a threat by the hedgehogs an increase in balling up would be expected and was observed in 

most of the study hedgehogs. 

Interestingly two females (02_2016 and 13_2016) reduced their balling up behaviour during the 

festival phase. Direct observation of those two confirmed that both had offspring during the 

study. Judging from the developmental state of the offspring 02_2016 is estimated to have given 

birth in the last week before the festival (22nd of August until the 28th of August) and 13_2016 

in the first week of the festival (29th of August until the 4th of September). Having offspring in 

the nest could prevent the mothers from balling up for either the simple reason that the nest 

does not offer enough space or the fact that balling up would prevent the offspring from 
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reaching the teats. The change in balling up behaviour was more drastic in 02_2016. Considering 

the estimated date of birth, the offspring of 02_2016 should have been bigger than the offspring 

of 13_2016 during the whole festival. This would support the hypothesis of the lack of space in 

the nest as a reason for reduced balling up. It has to be noted that there are different degrees of 

balling up. For this study, balling up was defined as a complete ball with no visible head. There 

are however defensive positions a hedgehog can assume were the balling is only minimal [13]. 

This could lead to a misclassification of a defensive behaviour as a non-defensive immobile 

behaviour. 

A number of mammals have been shown to reduce their movement when in the presence of a 

predator [39]. In this context, a reduction in locomotion would have been expected. However, 

the effect of the festival on locomotive behaviour is mixed between the individuals. There were 

no significant differences among males, suggesting that the festival had no influence on their 

locomotion. All females, however, showed a significant change in locomotion. Individuals 

08_2016 and 17_2016 showed reduced locomotion while 02_2016 and 13_2016 showed an 

increase. As the latter two were in lactation they should have experienced a higher energy 

demand than the females with no offspring [40]. Therefore they were forced to increase their 

foraging effort regardless of the festival while the other two females could avoid taking longer 

trips. 

5.4.3 Daily activity pattern 

Ordiz et al. [41] showed that changes in daily activity patterns are useful as a proxy of 

anthropogenic influences on wildlife. While, Gaynor et. al [42] showed, irrespective of taxa, 

habitat or location, mammals were more nocturnal in their daily activity patterns in response to 

human disturbance. For hedgehogs as strict nocturnal animals, increased nocturnal behaviour is 

difficult. Indeed, during the festival phase, six out of eight hedgehogs shifted their activity even 

more into the night shown by a decrease in DIs. The one animal (17_2016) which highly 

increased DI during the festival had its nest below a food stand near the stage and was observed 

feeding on food scraps during the day, which is both an unusual behaviour and food source for 

hedgehogs. However, only considering the DI did not effectively show how much hedgehog 

activity pattern changed during the festival. TSdusk showed that the hedgehogs started their 

nocturnal activity later during the festival than before the festival. Similarly, Shirley et al. [43] 

showed that the Brinkburn Summer Music Festival had a significant effect on the timing of bat 

behaviour leaving their priory up to 47 min later on festival nights. Therefore, DI as a solitary 
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proxy for human disturbance is inadequate and should be supplemented by other parameters like 

TSdusk. 

The extremely high confidence interval in the DI and TSdusk of female 02_2016 are due to a 

strongly disturbed activity pattern that most likely resulted from the parturition that was 

estimated for the last week of the pre-festival phase (see section ‘behaviour analysis’). 

5.4.4 ODBA analysis 

Overall it seems that the festival did not have any influence on the ODBA of the study 

hedgehogs. Only individuals 08_2016 and 17_2016 showed a significant decrease during the 

festival phase. Lower ODBA values could be the result of less movement in the nest during 

resting periods and also reduced foraging or general locomotion. It could be possible that those 

two individuals limited their movement in order to avoid contact with the construction works 

(compare with section ‘Behaviour analysis’ and [39]). It could also indicate that they moved less 

in their nests during resting periods to avoid being detected in the nest. Considering only the 

ODBA values, it is unclear why only these two showed changes in their ODBA profile and not 

the other five individuals that also inhabited the festival grounds during construction. 

Using the ODBA as a proxy for energy expenditure seemed inappropriate in this study. Various 

circumstances could lead to ODBA values that do not properly reflect energy expenditure. 

Flexible tendons, different animal gaits and moving up or down slopes have an unknown 

influence on the ODBA to energy expenditure relationship [28]. In the case of hedgehogs, 

moving through an area with thick ground cover like ivy (Hedera helix), brambles (Rubus spp.) or a 

lot of dead wood is more taxing to hedgehogs than walking over an open field. The additional 

energy used will not be reflected in higher body acceleration and would lead to an 

underestimation of the energy expended. Additionally, hedgehogs have the ability to ball up. To 

hold this position the animal has to flex muscles which do not result in any body acceleration. 

This energy expenditure would be completely missed. 

5.4.5 Stress detection 

Out of eight hedgehogs, five showed a significant decrease in the DFC during the festival, which 

supports our hypothesis that DFC values were lower during the festival phase. High DFCs are 

often found in healthy animals or those which are strongly diurnal or nocturnal [44]. Low DFCs 

indicates that the animal is weakly synchronized with the environmental rhythm, which can be an 

indicator of stressors or disease, but also by parturition [45]. We interpret the changes in the 

DFC as a sign of stress [8]. Individual 02_2016 showed an increase in the DFC, although this 
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was not significant. This individual showed a wide confidence interval in the pre-festival phase 

suggesting low DFC on some days during this phase. As discussed in the section ‘behaviour 

analysis’, this female was estimated to have given birth in the last week of the pre-festival phase. 

Parturition was shown to have a great impact on the activity pattern of mothers [45]. Therefore 

high fluctuations in the DFC should be expected in the time around parturition. Even though 

individual 13_2016 also gave birth during the study no pattern similar to 02_2016 was recorded. 

In contrast, 17_2016 showed a wide confidence interval but no offspring were observed. Close 

monitoring throughout the study, however, led to the assumption that 17_2016 suffered from a 

miscarriage. Individual 01_2016 is the only hedgehog that shows almost no change in mean DFC 

values. Through our close spatial monitoring, we observed that this hedgehog left the study area 

and thus the festival grounds. 

5.5 Conclusions 

Even though urban hedgehogs are expected to show a greater tolerance towards anthropogenic 

activities compared to their rural conspecifics [12], we showed that the music festival had an 

impact on the behaviour of all study hedgehogs. However, there was no general pattern in the 

way hedgehogs reacted to the disturbance. Employing different strategies in the same 

environment was found to have an influence on the fitness of great tits [46].  

Our study provides evidence of the strong behavioural plasticity of urban hedgehogs. 

Behavioural plasticity plays a key role in species adaptation to rapid environmental changes (like 

urbanization) caused by anthropogenic activities [6] and is also likely to be crucial in the context 

of coping strategies to human activities. Despite the high plasticity and higher abundance in 

urban than rural areas, numbers of hedgehogs have decreased across Europe [47–52]. Future 

management of hedgehogs in cities should therefore include spatial and temporal protection 

areas during human disturbances, like festival or park management measures.  

We used seven different parameters to measure hedgehog behaviour (one using GPS, one using 

VHF and five using acceleration). We were able to map the behavioural reactions of eight 

hedgehogs in response to a festival event. The planning of the festival employed wildlife 

protection measures in building fences and closing the area during the night on the two days 

music was played. These measures seemed insufficient as indicated by the measurable hedgehog 

responses. We expect our findings to exemplify responses to disturbance in urban areas. Changes 

to the environment often happen on a large scale and appear very sudden. What remains unclear 

are the potential long-lasting effects of the festival event. Such effects could only be captured by 

long term monitoring. The presence of trucks and visitors during the festival might have 



Music festival makes hedgehogs move: How individuals cope behaviourally in response to 
human-induced stressors 

133 

influenced soil density and the soil fauna which hedgehogs depend on as a food source. Soil 

compaction and its effect on hedgehogs have, to our knowledge, not yet been addressed. In a 

study in the Regent’s Park in London [13] hedgehogs were found to avoid the sports area. Here 

it was also suggested that the compaction due to sport activities had an impact on the prey 

species of the hedgehog, and it has been shown that soil compaction can influence the 

abundance of earthworms [53] which hedgehogs rely on as a food source. As soil compaction is 

not quick to reverse, possible long term effects should be considered in future studies.  

Habituation to humans may indeed appear when animals are repeatedly exposed to benign 

interactions with human activities, although differences exist in the degree to which a species, or 

an individual, tolerates humans [54, 55]. We found a high individuality in our study and therefore 

strongly recommend that future studies and management plans consider the potential influence 

of the individuality of solitary species and provide retreat areas [56]. 
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General discussion 

A sustainable population, which is resistant and resilient to environmental changes, is an essential 

base for species survival. The genetic diversity and behaviour of individuals are primary drivers 

of population sustainability. During this project, we investigated hedgehogs over the whole city 

of Berlin and beyond to reveal possible effects of the urban matrix on hedgehogs. With 

improvements in genetic and ecological methods, we have laid the foundation for future 

projects. Furthermore, we reveal complex population reactions as well as the individual coping 

strategies of an enigmatic small mammal to different stressors in the anthropogenic changed 

environment. Hedgehogs could serve as a model or even flagship species for small ground-

dwelling species in urban systems for applied evidence-based conservation, by utilizing basic 

ecological understanding on population and individual levels.  

Genetic of hedgehogs in urban systems 

With the aide of stakeholders, we non-invasively collected saliva samples from individuals in and 

around Berlin to analyse genetic composition via microsatellite data. Surprisingly we found no 

signs of genetic clustering in the first citywide genetic study of this area (Berlin 875.94 km2). We 

expected some sort of genetic structure in the population, based on the traits of the species and 

limitation of dispersal in highly fragmented habitat and previous results in a smaller urbanized 

area (Zurich <100 km²). The lack of a general genetic differentiation across the entire city and 

some surrounding areas deserve some discussion, even though our study revealed some fine-

grained population structure in some local parks. In the first approach using a ‘cleaned’ dataset 

with only unrelated samples, all samples were assigned to one cluster, while in a second approach 

with all available samples ‘family-clans’ in some areas parks were found. This could be the first 

sign of restricted gene flow in the population of hedgehogs. In combination with inbreeding and 

initial population size, this could increase the probability of local population extinction (Soul and 

Mills, 1998). However, the clustering approaches are sensitive to analyses with close relatives, like 

half and full siblings (Rodríguez-Ramilo and Wang, 2012), which are naturally spatial close to 

each other if they survive. In hedgehogs, a minimum viable population of 32 individuals on 

urban green patches with at least 90 ha was identified by a simulation model (Moorhouse, 2013). 

Therefore in theory, both parks investigated here, showing ‘family-clan’ structures, could be self-

sustaining and disconnected to the surrounding population. This could explain how green spaces 

support hedgehog populations in urban areas but does not explain the general lack of structure 

over the whole city, considering the more conservative approach to our genetic analysis. It could 
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be possible that additional factors have enhanced genetic mixing. Considering the high numbers 

of hedgehogs in animal rehabilitation centres and their subsequent release into subjectively 

favourable habitats, we suggest that welfare activities could lead to the lack of structure, which 

we call the ‘welfare disturbance hypothesis’. The welfare disturbance hypothesis includes the fact 

that rehabilitated hedgehogs are rarely released at their point of origin. Hedgehogs usually have 

limited opportunities for dispersal across the city, due to no clear dispersal phase in their 

ontogeny and their susceptibility to barriers. Therefore this human facilitated dispersal could lead 

to increased genetic diversity of the population. Thus, if this hypothesis is true, all remaining 

populations and potential structuring would be masked by the released hedgehogs. In order to 

study the effect of translocation after rehabilitation on genetic diversity, two things would have 

to be tested; first, we would need to study clear examples of hedgehogs that have been 

translocated and secondly whether or not they have successfully reproduced in the new 

environment, enhancing admixture and increasing genetic diversity.  

Higher resolution in genetic methods helps to identify finer differences between 

individuals/subpopulations and increase the understanding of genetic dynamics within the 

population. Our improved methods and newly established genetic markers provide this higher 

resolution (see Chapter 2 / (ii)). By identifying 42 genetic markers for closely related hedgehog 

species instead of only 10 markers in one species, it has been possible to detect fine structural 

elements. Furthermore, now it is possible to detect potential hybridization between the two 

species. Interestingly in the process of identifying this marker, only in E. roumanicus we found a 

relationship between genetic structure and geographical distribution that was absent in E. 

europaeus, obscuring more interesting traits, which could be revealed by Europe wide 

collaboration. Using relatively easily accessible samples from former projects or museum 

samples, plus new non-invasive saliva samples from collaborations with veterinary practices, 

rehabilitation centres, and animal shelters, new projects should be possible in the nearer future. 

If in this process the effect described by the welfare disturbance hypotheses is confirmed, it 

could weaken the potential of hedgehogs as model species, to identify early signs of critical levels 

of fragmentation. However, ‘urban conservation genetics’ need model species from various taxa 

to give a more complete picture about the genetic variability of urban wildlife (Noël and 

Lapointe, 2010; Munshi-South and Nagy, 2014). In a study of urban mice, only 3 out of 14 

populations showed consequences of genetic bottlenecks, while small networks of green spaces 

seemed to support self-sustaining populations (Munshi-South and Nagy, 2014). Our first 

question, whether fragmentation has affected the genetic structure of the hedgehog population in 

Berlin, is partly answered since there is no sign of spatial clustering. Understanding the 
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underlying mechanisms could lead to evidence-based population management instead of 

passively relying on the current genetic diversity and the unknown effects of possible animal 

movement by wildlife rehabilitators. 

Movement and behaviour  

Genetic diversity and mixture of subpopulations are strongly connected to movement and 

dispersal of animals. Thus, our new method to attach data loggers on hedgehogs enables long-

term ecological studies to understand the movements of hedgehogs in and outside of cities (iii). 

Compared to previous methods, this novel method has not only improved welfare of studied 

individuals, it also decreased general costs and improved flexibility to study hedgehogs in a 

natural setting. It also enabled us, together with technological advancements to studying 

hedgehogs with higher spatial and temporal resolution over a longer period than previous studies 

were able to. We showed (iv/v) that urban-living hedgehogs in Berlin display behavioural 

flexibility, which may be a response that enables the population to be resistant and resilient 

towards (anthropogenic) disturbances in the city. We observed individuals avoiding 

anthropogenic stressors and behavioural flexibility under new circumstances. It is only because 

of the application of this improved method that we could show that our investigated population 

changed their behaviour differently in response to anthropogenic disturbances. These 

disturbances influenced the behaviour not only spatially but also temporally: hedgehogs adjusted 

their roaming behaviour, their activity and nesting behaviour.  

Considering the limitation in the statistical analyses of comparing two parks in two different 

years (iv), we found different adjustments of behaviour to disturbance on the one hand and 

fragmentation on the other. More precisely, we found individual coping strategies in the 

hedgehog population during the open-air music festival (v). These individual strategies are an 

example of the behavioural plasticity that may enable animals to cope with stressors and lead to a 

higher resistance to disturbances for the population and ultimately the species (McDonnell and 

Hahs, 2015). We were able to show that the circadian rhythm of hedgehogs changed with respect 

to the various stressors of the music festival. This change itself can be a sign of stress. Acute 

stress and chronic stress can affect the population negatively (Hofer and East, 1998). This is 

found to promote an impaired body condition and to permanently disrupt homeostasis, which 

for example lead to reduced reproduction, lower survival rates and lower immune response 

(Dhabhar et al., 1996; Wingfield, Jacobs and Hillgarth, 1997; Buchanan, 2000; Sapolsky, Romero 

and Munck, 2000; Wikelski and Cooke, 2006; Demas et al., 2011). 
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Animals could be pre-adapted or become habituated to the general urban stressors, living under 

constant stress similar to natural habitats (e.g. predation), but the acute and/or consistently 

changing stressors that occur in urban environments could have more detrimental long-term 

consequences. Our results could be considered evidence that hedgehogs, in general, are pre-

adapted to cope with environmental changes within an urbanized matrix; however, we are not 

able to clarify if hedgehogs are thriving in the cities in the long-term. The question remains if 

hedgehogs can be considered as a resident species or if they make the best out of an 

unfavourable situation and are simply surviving, but not thriving, in cities. It could be that the 

behaviour of urban hedgehogs is maladjusted, leading to suboptimal behaviour and eventual 

extinction in urban habitats. The feedback system between environmental changes and 

behaviour must be better understood to finally evaluate the biodiversity of cities (Figure 0.2).  

 

Figure 0.2: The feedback system between environment, behaviour and biodiversity. Changes in environmental 
conditions induce behavioural responses according to the reaction norm of the individual, which in turn affects species 
interactions, population dynamics, evolutionary processes and, ultimately, biodiversity. Changes in population 
dynamics, evolutionary processes and species interactions, in turn, affect behaviour, resulting in a complex network of 
feedback loops. From (Tuomainen and Candolin, 2011) 

It has been previously described that animals react to disturbance and change their behaviour in 

response to environmental changes (McDonnell and Hahs, 2015). However, the effect of 

anthropogenic stressors is much larger and anthropogenic landscape changes occur at a faster 

rate than in most natural situations (Wong and Candolin, 2015). Additionally, in urban areas 

changes intensify over time, which could lead to a tipping point in the support of natural 

resources and species (Hastings et al., 2018). 
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Past, present and future  

Our results point out the restrictions of using hedgehogs as a model species for other small 

mammals and their genetic diversity. They do not seem to be affected in their genetic diversity or 

at least have enough factors supporting genetic mixing in the population, but further 

investigations should verify it. The hedgehogs still could serve as model and flagship species to 

investigate nature conservation, not only in the urban context. This species’ close association to 

mosaic-like habitats, the predation on macro invertebrates and the need for dense and open 

vegetation could help to engage with the public and to convince hedgehog friendly park 

management and home gardening. These actions could support food webs and habitats for a 

variety of small mammals, birds, and other ecosystem services. We need to give nature space in 

this agricultural and urbanized environment (Beninde, Veith and Hochkirch, 2015; Villaseñor et 

al., 2017). Particularly for hedgehogs, it would be preferable to create guidelines for hedgehog 

rescue centres and other animal rescue centres, to first keep track of the yearly numbers in this 

kind of facilities and to make evidence-based decisions of rehabilitation and informed relocation 

possible. We should not overlook other small mammal species in the cities and monitor them 

closely because it is possible that more species in the city can make the best out of their 

unfavourable situation. This could mean that, especially in huge pressure residential 

intensification, green spaces have to stay connected. Thus, the support of self-sustaining 

populations in urban areas could be possible and ensure a natural high genetic exchange. With 

respect to all species in cities, green parks should have ‘natural’ habitats where the park 

management is used to support natural processes. Leaving for example leaf litter can support the 

ecosystem at its foundation, with the maintenance of nutrient cyclings and invertebrate 

communities, which are supporting the food chain from ground-dwelling mammals to bats and 

birds. At the same time, these ‘natural’ areas create ‘stepping-stones’ for flora and fauna, enabling 

natural dispersal of species and connecting populations (Lundberg and Moberg, 2003). Even 

small gardens and crossing structures with native flora can connect and enable gene flow 

(Braaker, 2012; Braaker, Ghazoul, et al., 2014; Braaker, Moretti, et al., 2014; Soanes et al., 2018). In 

order for the threatened and yet still numerous species in cities to be supported in future we 

need other knowledge and examples in urban planning to be integrated into infrastructural and 

landscape management of cities (Weisser and Hauck, 2015; Aronson et al., 2017; Villaseñor et al., 

2017). Compact development minimizes the impacts of urban growth on native mammals 

(Villaseñor et al., 2017). 

Thus cities are able to create refuge habitats for species. It is possible that at some point in future 

populations from urbanized areas are needed to recolonize surrounding to restore natural 
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habitats. We need to understand the similarities and differences in the behaviour of species in 

both urban and rural context to protect both.  

While we were able to show that research is necessary at both the individual and population 

level, without continued monitoring of individual movement and behaviours using specialized 

techniques such as ours, we will never be able to truly understand the greater intricacies of such a 

complex ecosystem as we have in urban centres. If anyone wants to preserve and understand the 

complexity of nature, an integrative and specialized approach is necessary. We now have the 

tools and the capacity to monitor animals at both fine and large spatial and temporal scales and 

this must be done to disentangle the intricate web of urban ecosystems. 
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Supplementary Figure 1.1: Map of all sampling locations (N= 65), displaying the distribution of individual genotype 
Q-values (STRUCTURE analysis results), values in-between are interpolated. Left: data for cluster 1, center: data for 
cluster 2, right: data for cluster 3. 
 

Supplementary Table 1.1: Origin of samples (N = 143) 

ID Year Month Adress lat_y long_x Source 

110 2016 May Trainierbahn Hoppegarten 52.4778846 13.6271494 IZW 

127 2013 September 
Rehwiese, Gerkrathstraße 

2 
52.42811 13.19973 IZW 

128 2013 October 
Moldaustr. 24, 10319 

Berlin 
52.49873 13.51299 

Veterinary 
Practice 

129 2013 October 
Rohrwallallee 10, 12527 

Berlin 
52.39525 13.63471 

Veterinary 
Practice 

135 2013 October 
Korkedamm 73, 12524 

Berlin 
52.4245 13.539 

Veterinary 
Practice 

136 2013 October 
Moldaustr. 24, 10319 

Berlin 
52.49873 13.51299 

Veterinary 
Practice 

137 2013 September 
Kablower Weg 89, 12526 

Berlin 
52.4034709 13.5853995 

Veterinary 
Practice 

138 2013 September 
Kablower Weg 89, 12526 

Berlin 
52.4034709 13.5853995 

Veterinary 
Practice 

139 2013 September 
Falkenberger Krugwiesen, 

13057 Berlin 
52.5641643 13.5338813 IZW 

140 2013 September 
Falkenberger Krugwiesen, 

13057 Berlin 
52.5641643 13.5338813 IZW 

184 2016 July 
Freischuetzstr., 13129 

Berlin 
52.6023802 13.45136 

Veterinary 
Practice 

185 2016 July 
Gutenfelsstr. 14, 13129 

Berlin 
52.6005441 13.4493462 

Veterinary 
Practice 

186 2016 August 
Gutenfelsstr. 14, 13129 

Berlin 
52.6005441 13.4493462 

Veterinary 
Practice 

187 2016 August 
Gutenfelsstr. 14, 13129 

Berlin 
52.6005441 13.4493462 

Veterinary 
Practice 

188 2016 August 
Schwarzelfenweg 19, 

13088 Berlin 
52.5714 13.46435 

Veterinary 
Practice 

189 2016 August Strasse 7, 13129 Berlin 52.5983843 13.4486779 
Veterinary 
Practice 
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191 2016 September 
Strasse 26 Nr. 30, 13129 

Berlin 
52.595897 13.4727698 

Veterinary 
Practice 

192 2016 September 
Urbacher Str., 13129 

Berlin 
52.6016518 13.4608262 

Veterinary 
Practice 

193 2016 October Jungbornstr., 13129 Berlin 52.598014 13.4593083 
Veterinary 
Practice 

125 2013 September 
Riesserseestr. 10, 12527 

Berlin 
52.4185357 13.5818458 

Veterinary 
Practice 

126 2013 September 
Moldaustr. 30, 10319 

Berlin 
52.49834 13.51277 

Veterinary 
Practice 

134 2013 August 
Volkspark Prenzlauerberg, 

Berlin 
52.53564 13.4634372 IZW 

176 2016 October Eisenhuettenstadt 52.1436615 14.6419022 
Hedgehog 

Station 

179 2016 October Eisenhuettenstadt 52.1436615 14.6419022 
Hedgehog 

Station 

182 2016 October Zehlendorf, Berlin 52.4339586 13.2589089 
Hedgehog 

Station 

194 2016 October 
Schwarzwaldstr./Ilsenstr., 

13129 Berlin 
52.598586 13.453231 

Veterinary 
Practice 

196 2016 October 
Schwarzwaldstr., 13129 

Berlin 
52.598586 13.453231 

Veterinary 
Practice 

197 2016 November Krontalerstr., 13125 Berlin 52.6112819 13.4577434 
Veterinary 
Practice 

198 2016 October 
Gutenfelsstr. 14, 13129 

Berlin 
52.6005441 13.4493462 

Veterinary 
Practice 

199 2016 October Hellersdorf,Berlin 52.536107 13.6049726 
Veterinary 
Practice 

200 2016 October 
Gutenfelsstr. 14, 13129 

Berlin 
52.6005441 13.4493462 

Veterinary 
Practice 

203 2016 October 
Freischuetzstr., 13129 

Berlin 
52.6023802 13.45136 

Veterinary 
Practice 

114 2017 April Togostr. 45, 13351 Berlin 52.55369 13.33934 
Veterinary 
Practice 

116 2017 March 
Alt-Tegel 47c, 13507 

Berlin 
52.58759 13.27552 

Veterinary 
Practice 

117 2017 May 
Aroser Allee 111, 13407 

Berlin 
52.56659 13.35125 

Veterinary 
Practice 

119 2017 May Ghanastr. 27, 13351 Berlin 52.56047 13.32984 
Veterinary 
Practice 

120 2017 July Altglienike Feldweg 52.3975145 13.5554986 
Veterinary 
Practice 

141 2017 May Tierpark, Berlin 52.5023038 13.5313559 IZW 

142 2017 July 
Volkspark Prenzlauerberg, 

Berlin 
52.53564 13.4634372 IZW 

143 2017 June Tiergarten, Berlin 52.5144898 13.3500906 IZW 
144 2017 May Tierpark, Berlin 52.5023038 13.5313559 IZW 
146 2017 May Tierpark, Berlin 52.5023038 13.5313559 IZW 
147 2017 June Tiergarten, Berlin 52.5144898 13.3500906 IZW 
149 2017 May Tierpark, Berlin 52.5023038 13.5313559 IZW 

150 2017 June 
Buergerpark Pankow-

Berlin 
52.5694584 13.394732 IZW 

152 2017 June Tiergarten, Berlin 52.5144898 13.3500906 IZW 

153 2017 June 
Volkspark Prenzlauerberg, 

Berlin 
52.53564 13.4634372 IZW 
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154 2017 May Tierpark, Berlin 52.5023038 13.5313559 IZW 

156 2017 June 
Buergerpark Pankow-

Berlin 
52.5694584 13.394732 IZW 

157 2017 NA Treptower Park 52.48846 13.46974 IZW 

158 2017 July 
Hans-Baluschek-Park, 

10829 Berlin 
52.4644359 13.3570684 IZW 

159 2017 July Prenzlauerberg 52.54114 13.44009 IZW 

161 2017 July 
Hans-Baluschek-Park, 

10829 Berlin 
52.4644359 13.3570684 IZW 

165 2017 May Tierpark, Berlin 52.5023038 13.5313559 IZW 
166 2017 May Tiergarten, Berlin 52.5144898 13.3500906 IZW 
167 2017 June Tiergarten, Berlin 52.5144898 13.3500906 IZW 

168 2017 July 
Volkspark Prenzlauerberg, 

Berlin 
52.53564 13.4634372 IZW 

169 2017 July 
Hans-Baluschek-Park, 

10829 Berlin 
52.4644359 13.3570684 IZW 

170 2017 June 
Volkspark Prenzlauerberg, 

Berlin 
52.53564 13.4634372 IZW 

172 2017 July 
Volkspark Prenzlauerberg, 

Berlin 
52.53564 13.4634372 IZW 

174 2017 May Tierpark, Berlin 52.5023038 13.5313559 IZW 

175 2017 July 
Volkspark Prenzlauerberg, 

Berlin 
52.53564 13.4634372 IZW 

305 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
306 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
307 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
308 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
311 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
312 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
314 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
315 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
317 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
318 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
319 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
320 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
321 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
322 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 

324 2017 September 
Eisenacher Str.,12629 

Berlin 
52.5402405 13.5902187 Pound 

326 2017 October 
Zum Erlenbruch, 15344 

Strausberg 
52.5680305 13.8773122 Pound 

328 2017 September 
Warnemünder Str. 18, 

13059 Berlin 
52.57423 13.50583 Pound 

329 2017 September 
Warnemünder Str. 18, 

13059 Berlin 
52.57423 13.50583 Pound 

330 2017 September 
Warnemünder Str. 18, 

13059 Berlin 
52.57423 13.50583 Pound 

333 2017 September 12623 Berlin 52.5032943 13.6073142 Pound 
334 2017 September 12623 Berlin 52.5032943 13.6073142 Pound 

335 2017 September 12623 Berlin 52.5032943 13.6073142 Pound 

337 2017 October 
KGA Märchenland, 13089 

Berlin 
52.5749069 13.4650705 Pound 

338 2017 November 
Belziger Ring 36, 12689 

Berlin 
52.56367 13.57531 Pound 

340 2017 October Mahlerstraße, 13088 Berlin 52.5468372 13.4537713 Pound 
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341 2017 October 
Kleingartenanlage 750 

Jahre Berlin, 13057 Berlin 
52.5739373 13.5438938 Pound 

342 2017 September Tierpark, Berlin 52.5023038 13.5313559 IZW 
344 2017 September IZW Garten, Berlin 52.50597 13.52148 IZW 
345 2017 October Treptower Park 52.48846 13.46974 IZW 
346 2017 August Treptower Park 52.48846 13.46974 IZW 
348 2017 August Treptower Park 52.48846 13.46974 IZW 
349 2017 August Treptower Park 52.48846 13.46974 IZW 
350 2017 August Treptower Park 52.48846 13.46974 IZW 

113 2017 April 
Choise-le-Roi-Str. 3, 

Berlin 
52.65611 13.19784 

Veterinary 
Practice 

118 2017 April 
Vielitzsee Ortsteil 
Strubensee, 16835 

52.9397147 13.021689 
Veterinary 
Practice 

309 2017 August Nordbahnhof 52.5318835 13.3883826 IZW 

310 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 

313 2017 August Tierpark, Berlin 52.5023038 13.5313559 IZW 
343 2017 September Tierpark, Berlin 52.5023038 13.5313559 IZW 
220 2017 April Friedenstr., Berlin ? 52.5231715 13.4339728 Pound 

231 2016 October 
Friedenstr. 8, 16356 

Ahrensfelde 
52.58345 13.57986 Pound 

235 2016 August 
Glasberger Str. 43, 12555 

Berlin 
52.46971 13.57587 Pound 

241 2016 September 
Glambecker Ring 4, 12679 

Berlin 
52.55203 13.57497 Pound 

243 2016 April Zeuthen 52.3476518 13.6207615 Pound 

248 2016 September 13053 Berlin 52.5559059 13.5055018 Pound 

252 2016 October 
Friedenstr., 16356 

Ahrensfelde 
52.5870868 13.5811324 Pound 

257 2017 June 
Dietrichstr. 5, 16356 

Ahrensfelde 
52.5975636 13.5557275 Pound 

261 2016 September 
Wolfshofstr. 25, 13591 

Berlin 
52.54398 13.1606 

Veterinary 
Practice 

300 2017 September 
Kastanienallee 122/126, 
12627 Berlin-Hellersdorf 

52.543 13.60164 Pound 

A1.317 2017 May Treptower Park 52.4884599 13.4697445 IZW 

A10.028 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A11.028 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A12.028 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A13.028 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A14.028 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A15.028 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A16.028 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A2.317 2017 June Treptower Park 52.4884599 13.4697445 IZW 

A20.038 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A21.038 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A22.038 2016 July Treptower Park 52.4884599 13.4697445 IZW 

A23.038 2016 August Treptower Park 52.4884599 13.4697445 IZW 

A27.078 2016 June Treptower Park 52.4884599 13.4697445 IZW 
A28.078 2016 June Treptower Park 52.4884599 13.4697445 IZW 
A3.317 2017 July Treptower Park 52.4884599 13.4697445 IZW 
A30.078 2016 June Treptower Park 52.4884599 13.4697445 IZW 
A31.078 2016 June Treptower Park 52.4884599 13.4697445 IZW 
A32.078 2016 June Treptower Park 52.4884599 13.4697445 IZW 
A34.078 2016 June Treptower Park 52.4884599 13.4697445 IZW 
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A35.088 2016 July Treptower Park 52.4884599 13.4697445 IZW 
A37.088 2016 July Treptower Park 52.4884599 13.4697445 IZW 
A4.317 2017 June Treptower Park 52.4884599 13.4697445 IZW 
A43.088 2016 October Treptower Park 52.4884599 13.4697445 IZW 
A47.098 2015 August Treptower Park 52.4884599 13.4697445 IZW 
A5.317 2017 June Treptower Park 52.4884599 13.4697445 IZW 
A56.098 2015 September Treptower Park 52.4884599 13.4697445 IZW 
A59.108 2015 August Treptower Park 52.4884599 13.4697445 IZW 
A61.108 2015 August Treptower Park 52.4884599 13.4697445 IZW 
A62.108 2015 August Treptower Park 52.4884599 13.4697445 IZW 
A68.108 2015 September Treptower Park 52.4884599 13.4697445 IZW 
A9.028 2016 July Treptower Park 52.4884599 13.4697445 IZW 

 

 



 

 

 

Supplementary Figure 1.2: Pairwise relatedness after Queller and Goodman (QGEst) of sampled genotypes (Ind1 and Ind2) before (left) and after (right) removing related genotypes r >  



 

Supplementary Table 1.2: Unique genotypes (N = 143) of hedgehogs in Berlin across 10 loci 

ID 
EEU

1 
EEU

1 
EEU

2 
EEU

2 
EEU

3 
EEU

3 
EEU

4 
EEU

4 
EEU

5 
EEU

5 
EEU

6 
EEU

6 
EEU12

H 
EEU12

H 
EEU36

H 
EEU36

H 
EEU37

H 
EEU37

H 
EEU43

H 
EEU43

H 

110 135 139 257 257 145 153 148 148 113 129 145 145 91 97 246 248 154 158 282 284 
127 135 135 257 257 145 163 160 160 113 135 145 145 95 97 240 276 154 158 282 282 
128 129 129 259 267 149 165 148 160 115 129 145 145 97 97 246 276 154 170 282 286 
129 135 143 259 267 149 163 160 170 113 135 145 155 91 97 236 240 154 154 282 282 
135 135 139 259 279 149 153 156 158 113 113 145 145 91 91 246 260 154 156 282 286 
136 129 139 267 269 145 165 148 148 115 129 145 145 91 97 246 276 154 154 282 282 
137 135 135 261 267 131 163 158 160 109 113 145 145 91 91 248 248 154 154 282 282 
138 135 139 261 273 163 163 158 160 109 113 145 145 91 91 248 248 154 156 282 284 
139 131 135 269 269 145 155 144 158 109 113 145 145 91 97 240 246 154 158 282 290 
140 135 139 267 281 145 153 148 148 115 129 145 145 91 97 24 246 156 156 282 290 
184 129 131 267 269 145 145 154 160 109 129 145 145 91 91 240 248 148 158 282 292 
185 135 137 269 271 153 169 146 152 109 113 145 159 91 97 256 256 150 154 282 292 
186 139 139 265 267 155 163 148 152 113 127 145 145 97 97 256 256 150 154 284 290 
187 137 139 257 273 149 169 148 164 113 115 145 159 91 97 238 248 158 158 282 282 
188 129 139 257 269 153 179 160 170 113 129 145 145 91 95 240 256 152 154 282 290 
189 135 135 267 267 153 153 148 156 113 113 145 155 91 91 240 256 156 158 282 282 
191 129 129 267 267 153 169 152 152 113 113 145 145 91 97 256 256 154 158 282 282 
192 135 139 257 259 159 179 146 160 107 113 145 147 91 97 246 256 148 154 284 290 
193 129 139 269 277 169 169 160 164 113 113 145 145 91 97 240 256 154 158 282 292 
125 129 139 267 269 153 163 148 150 113 115 145 145 91 91 240 248 154 156 282 282 
126 129 129 267 269 145 163 148 148 113 115 145 159 91 91 240 246 154 170 282 282 
134 135 139 267 275 149 163 148 150 113 115 145 145 95 97 240 248 154 154 282 286 
176 131 135 259 259 153 159 148 164 113 113 145 157 91 97 244 246 150 154 282 282 
179 131 131 259 259 153 153 148 150 113 113 145 147 91 97 244 248 156 156 282 282 
182 129 139 267 279 153 153 160 160 107 135 145 145 91 91 246 272 154 154 282 282 
194 139 139 257 267 145 159 148 160 113 123 145 145 97 97 240 256 154 156 282 286 
196 139 139 259 267 145 179 148 160 107 123 145 145 91 97 238 256 154 154 282 292 
197 131 139 269 277 153 163 148 158 107 113 145 155 91 91 248 256 154 158 282 282 
198 129 137 259 267 163 165 148 158 109 113 145 145 97 97 248 248 154 158 282 286 
199 131 131 257 257 153 153 148 148 113 125 145 145 91 91 250 250 158 158 284 284 
200 129 137 269 273 149 169 148 154 107 115 145 145 97 97 240 248 158 158 282 282 
203 137 139 265 273 149 163 148 148 113 127 145 145 97 97 248 256 154 158 282 284 
114 131 139 259 269 149 153 158 160 113 113 145 145 91 97 240 248 154 158 282 292 
116 135 135 263 265 159 177 148 160 113 129 145 145 95 97 238 256 154 154 282 284 
117 135 139 267 271 145 169 150 170 113 123 145 145 97 97 248 248 152 158 280 282 
119 131 139 263 273 145 149 152 160 113 139 145 145 91 95 250 252 152 156 282 290 
120 135 139 269 281 149 169 148 160 115 139 145 147 91 91 236 240 148 152 282 292 
141 129 139 257 263 153 163 148 158 121 129 145 155 91 97 246 246 148 158 282 290 
142 135 135 263 273 153 163 148 158 113 115 145 145 91 95 240 248 154 156 282 282 
143 129 129 257 259 153 159 150 150 109 113 145 145 91 97 240 252 158 158 284 292 
144 129 129 257 267 153 179 148 158 113 129 145 155 97 97 246 246 148 154 282 290 
146 129 129 257 267 153 179 148 148 113 129 145 155 97 97 240 246 154 154 282 290 
147 139 139 257 271 131 159 156 170 115 115 145 155 91 97 278 278 156 156 282 282 
149 129 139 271 271 153 153 158 160 113 129 145 145 93 95 246 246 148 154 290 292 
150 131 135 257 265 159 163 158 164 115 121 145 145 97 97 256 272 152 154 282 282 



 

 

152 139 139 269 269 153 153 148 148 113 113 145 145 97 97 240 256 154 156 282 282 
153 135 139 267 269 145 163 156 158 113 113 145 155 91 95 240 272 152 156 282 284 
154 129 139 265 267 163 179 148 160 113 113 145 155 91 97 246 246 148 158 282 292 
156 135 139 267 267 153 163 148 164 109 113 145 145 91 97 240 248 154 156 282 282 
157 129 131 259 267 145 179 158 158 115 115 145 153 91 95 248 274 152 154 282 290 
158 135 135 273 275 149 165 166 170 113 113 145 155 95 97 248 256 154 154 282 282 
159 135 139 275 275 149 165 148 160 115 129 145 145 91 91 248 248 156 158 282 284 
161 129 139 267 279 149 153 158 158 113 113 145 155 91 91 236 240 152 158 276 286 
165 129 129 257 265 153 163 158 160 113 129 145 145 97 97 246 246 154 154 282 282 
166 139 139 269 273 153 163 148 148 113 113 155 155 91 91 240 256 154 154 282 282 
167 139 139 257 271 131 175 170 170 113 115 145 155 97 97 278 278 156 156 282 282 
168 139 139 267 269 145 165 158 158 113 115 145 155 91 91 236 240 154 156 282 282 
169 131 135 257 257 145 145 158 170 113 121 145 145 91 91 248 256 154 154 282 282 
170 131 135 269 269 145 153 158 160 113 113 145 155 95 97 248 248 154 156 282 282 
172 135 139 261 269 145 163 150 160 115 129 145 147 91 95 240 248 154 156 282 290 
174 129 129 267 281 145 153 148 148 113 129 145 155 91 97 240 240 152 154 282 282 
175 135 139 261 273 153 163 158 170 113 115 145 155 91 91 248 248 156 156 282 282 
305 129 139 257 265 153 163 148 152 113 113 145 155 97 97 246 246 148 154 290 292 
306 129 129 257 271 153 153 148 148 113 129 145 155 97 97 246 246 148 148 282 290 
307 129 129 265 273 159 163 148 160 113 113 145 145 97 97 240 246 148 158 282 292 
308 131 135 261 273 145 159 148 158 113 129 145 145 91 97 240 244 154 158 282 282 
311 135 135 267 273 159 181 144 148 113 113 145 145 91 97 240 248 154 158 282 282 
312 129 139 257 265 153 163 148 160 113 113 145 155 97 97 246 246 148 154 282 292 
314 131 139 261 265 163 163 148 160 113 113 145 145 91 97 246 250 156 158 282 292 
315 135 139 265 267 163 163 158 158 113 113 145 145 91 97 246 246 154 154 292 292 
317 131 139 267 267 165 165 148 160 113 129 145 145 91 97 240 240 154 158 282 282 
318 129 135 265 267 163 179 146 148 113 129 145 155 97 97 246 246 148 154 282 282 
319 129 131 257 271 153 153 148 158 113 129 145 145 95 97 246 246 148 158 282 290 
320 129 129 257 263 153 163 148 160 113 115 145 145 91 91 246 256 154 154 282 282 
321 129 135 267 273 159 179 148 148 113 129 145 155 97 97 240 246 154 158 282 282 
322 129 135 261 265 145 163 158 160 113 129 145 145 97 97 240 246 148 154 282 292 
324 135 139 271 273 149 163 148 160 113 115 145 147 91 97 240 250 156 156 282 282 
326 139 139 267 267 131 145 148 160 113 129 145 145 91 91 240 248 156 160 282 290 
328 135 139 257 267 149 153 148 150 113 113 145 145 91 95 248 256 148 152 282 286 
329 139 139 267 267 153 153 150 160 113 115 145 145 91 91 240 248 148 154 284 286 
330 135 139 0 0 149 153 150 150 113 115 145 145 91 91 240 256 148 152 282 284 
333 139 141 257 267 153 163 148 160 113 129 145 145 91 97 240 256 150 154 282 290 
334 133 133 265 271 145 159 148 170 113 113 145 145 91 97 256 256 150 158 282 282 
335 135 139 267 267 153 159 148 160 113 113 145 145 91 95 240 256 154 154 284 284 
337 139 139 257 259 153 159 148 158 107 113 145 159 95 95 240 244 160 172 282 282 
338 131 143 259 265 145 153 150 158 113 115 145 145 91 97 240 258 158 158 282 296 
340 139 139 267 267 163 165 148 158 113 115 145 155 91 95 248 248 152 156 282 290 
341 133 139 257 269 145 171 158 164 107 113 145 145 91 97 240 256 154 156 282 282 
342 139 139 257 265 153 163 152 160 113 113 145 145 91 97 246 246 154 154 292 292 
344 129 131 257 257 153 153 148 148 113 113 145 155 95 97 246 246 148 158 282 290 
345 131 135 259 273 165 173 158 160 113 115 145 145 91 97 246 256 152 154 282 282 
346 131 135 273 273 173 173 160 160 109 113 145 155 91 95 256 256 154 156 282 282 
348 133 139 269 269 165 173 160 160 107 123 145 145 91 91 248 248 154 156 282 290 
349 129 135 267 273 145 149 158 160 107 113 145 147 91 93 248 274 154 154 282 282 
350 129 131 267 273 145 173 160 160 113 113 145 153 93 95 256 274 154 154 282 282 



 

 

113 135 139 257 269 153 171 148 160 113 131 145 145 91 91 244 280 162 164 282 282 
118 133 139 257 267 145 145 160 164 113 129 145 155 97 97 240 248 158 158 282 284 
309 135 139 267 271 145 153 160 160 113 123 145 145 91 91 256 256 154 156 292 292 
310 129 135 269 273 145 163 148 160 113 113 145 145 91 97 248 256 154 170 286 292 
313 129 129 257 267 153 179 158 160 129 129 145 145 97 97 246 246 154 154 282 282 
343 129 131 267 267 131 179 156 158 115 115 145 145 91 97 246 272 154 156 286 292 
220 135 135 257 267 153 159 148 148 113 113 145 147 91 97 240 258 158 162 282 282 
231 139 139 259 263 153 153 148 158 119 119 145 155 91 91 240 256 160 160 282 282 
235 129 139 263 269 153 153 158 160 113 127 145 155 91 91 240 248 156 158 282 286 
241 129 131 257 257 149 153 146 146 107 109 145 145 91 91 240 246 152 154 286 286 
243 135 139 257 259 145 155 148 160 113 115 145 145 97 97 246 246 154 156 282 286 
248 131 135 257 269 145 159 160 160 109 109 147 155 97 97 240 248 154 154 282 282 
252 129 129 259 269 149 173 158 158 121 121 145 145 93 97 236 250 160 160 282 290 
257 131 139 267 271 153 175 148 160 113 113 145 145 91 91 240 248 152 160 282 284 
261 129 139 269 269 145 163 160 160 107 109 145 145 91 97 240 248 154 156 290 290 
300 131 135 263 267 153 179 146 148 113 115 145 159 97 97 256 258 152 158 282 282 

A1_317 129 135 267 273 149 149 160 160 107 113 145 147 91 93 248 274 154 156 282 282 
A10_02

8 
129 135 263 269 163 173 160 162 113 115 145 145 95 97 256 276 152 154 290 292 

A11_02
8 

131 131 259 259 153 153 156 160 113 121 145 155 91 95 240 256 154 154 282 282 

A12_02
8 

129 135 259 267 165 179 148 160 115 115 145 155 91 93 256 272 154 154 292 292 

A13_02
8 

131 135 281 281 149 153 158 160 113 121 145 145 93 95 240 240 154 154 282 282 

A14_02
8 

135 135 273 281 149 173 156 160 121 127 145 145 91 91 256 272 154 156 282 286 

A15_02
8 

129 135 269 269 173 173 160 160 115 115 145 145 97 97 246 248 154 154 282 284 

A16_02
8 

133 139 269 279 165 173 160 160 107 121 145 145 91 91 248 248 154 156 282 290 

A2_317 131 135 259 267 165 165 158 160 113 115 145 145 91 97 240 276 152 154 282 282 
A20_03

8 
129 131 259 273 149 179 160 160 113 113 145 147 91 91 246 274 152 154 282 290 

A21_03
8 

129 135 259 259 149 149 160 168 107 107 145 145 97 97 250 250 154 154 284 290 

A22_03
8 

129 131 263 273 149 153 158 166 107 107 145 147 95 97 256 274 152 154 282 282 

A25_07
8 

131 135 259 269 173 179 156 160 113 115 145 145 91 97 246 246 152 154 282 290 

A27_07
8 

131 135 263 267 163 163 160 160 115 127 145 145 93 97 246 256 154 154 286 290 

A28_07
8 

131 133 263 269 153 173 148 156 107 115 145 145 93 97 246 272 154 154 282 282 

A3_317 135 139 267 267 159 163 148 160 107 115 145 155 91 91 274 278 148 156 282 290 
A30_07

8 
139 139 273 273 173 173 160 160 107 113 145 145 95 97 240 256 154 156 282 282 

A31_07
8 

131 133 269 273 173 173 148 160 107 113 145 145 97 97 246 246 154 154 282 282 

A32_07 131 131 267 273 173 173 156 160 113 115 145 145 91 97 246 256 152 156 282 282 



 

 

8 
A34_07

8 
135 139 267 269 163 173 156 158 113 115 145 145 97 97 278 278 156 158 282 282 

A35_08
8 

135 139 267 267 159 163 160 160 113 113 145 155 91 91 246 272 154 156 282 282 

A37_08
8 

131 135 259 269 173 179 156 160 113 115 145 145 91 97 246 248 152 154 282 290 

A4_317 137 137 0 0 149 149 148 148 123 125 145 145 91 91 246 246 146 148 282 282 
A43_08

8 
131 131 271 273 0 0 156 160 113 113 145 145 97 97 274 276 154 154 282 282 

A47_09
8 

131 139 269 273 173 173 160 160 107 127 145 145 97 97 240 240 154 154 282 282 

A5_317 129 135 259 269 153 173 148 160 113 115 145 145 93 97 240 248 154 154 282 282 
A56_09

8 
131 135 271 273 173 179 160 168 109 113 155 155 91 91 256 256 154 156 282 282 

A59_10
8 

135 135 269 269 173 173 158 160 115 115 145 145 97 97 0 0 154 154 282 282 

A61_10
8 

131 139 267 267 159 163 152 156 107 113 145 145 91 91 256 256 154 156 290 290 

A62_10
8 

129 135 259 281 149 165 148 162 113 115 145 145 91 91 248 256 154 160 290 292 

A68_10
8 

139 139 257 267 163 163 160 160 113 113 145 145 91 91 246 272 156 156 0 0 

A9_028 131 131 267 267 165 165 160 160 127 127 145 145 93 93 256 256 154 154 286 290 

Missing values are indicated by ‘0’.



 

 

Supplementary Table 1.3: Unique unrelated genotypes (N = 65, r < 0.5) of hedgehogs in Berlin across 10 loci 

ID 
EEU

1 
EEU1

.1 
EEU

2 
EEU2

.1 
EEU

3 
EEU3

.1 
EEU

4 
EEU4

.1 
EEU

5 
EEU5

.1 
EEU

6 
EEU6

.1 
EEU12

H 
EEU12

H.1 
EEU36

H 
EEU36

H.1 
EEU37

H 
EEU37

H.1 
EEU43

H 
EEU43

H.1 

110 135 139 257 257 145 153 148 148 113 129 145 145 91 97 246 248 154 158 282 284 
127 135 135 257 257 145 163 160 160 113 135 145 145 95 97 240 276 154 158 282 282 
129 135 143 259 267 149 163 160 170 113 135 145 155 91 97 236 240 154 154 282 282 
135 135 139 259 279 149 153 156 158 113 113 145 145 91 91 246 260 154 156 282 286 
139 131 135 269 269 145 155 144 158 109 113 145 145 91 97 240 246 154 158 282 290 
140 135 139 267 281 145 153 148 148 115 129 145 145 91 97 240 246 156 156 282 290 
184 129 131 267 269 145 145 154 160 109 129 145 145 91 91 240 248 148 158 282 292 
185 135 137 269 271 153 169 146 152 109 113 145 159 91 97 256 256 150 154 282 292 
188 129 139 257 269 153 179 160 170 113 129 145 145 91 95 240 256 152 154 282 290 
191 129 129 267 267 153 169 152 152 113 113 145 145 91 97 256 256 154 158 282 282 
192 135 139 257 259 159 179 146 160 107 113 145 147 91 97 246 256 148 154 284 290 
193 129 139 269 277 169 169 160 164 113 113 145 145 91 97 240 256 154 158 282 292 
134 135 139 267 275 149 163 148 150 113 115 145 145 95 97 240 248 154 154 282 286 
194 139 139 257 267 145 159 148 160 113 123 145 145 97 97 240 256 154 156 282 286 
196 139 139 259 267 145 179 148 160 107 123 145 145 91 97 238 256 154 154 282 292 
198 129 137 259 267 163 165 148 158 109 113 145 145 97 97 248 248 154 158 282 286 
199 131 131 257 257 153 153 148 148 113 125 145 145 91 91 250 250 158 158 284 284 
114 131 139 259 269 149 153 158 160 113 113 145 145 91 97 240 248 154 158 282 292 
116 135 135 263 265 159 177 148 160 113 129 145 145 95 97 238 256 154 154 282 284 
117 135 139 267 271 145 169 150 170 113 123 145 145 97 97 248 248 152 158 280 282 
119 131 139 263 273 145 149 152 160 113 139 145 145 91 95 250 252 152 156 282 290 
120 135 139 269 281 149 169 148 160 115 139 145 147 91 91 236 240 148 152 282 292 
143 129 129 257 259 153 159 150 150 109 113 145 145 91 97 240 252 158 158 284 292 
150 131 135 257 265 159 163 158 164 115 121 145 145 97 97 256 272 152 154 282 282 
152 139 139 269 269 153 153 148 148 113 113 145 145 97 97 240 256 154 156 282 282 
153 135 139 267 269 145 163 156 158 113 113 145 155 91 95 240 272 152 156 282 284 
157 129 131 259 267 145 179 158 158 115 115 145 153 91 95 248 274 152 154 282 290 
158 135 135 273 275 149 165 166 170 113 113 145 155 95 97 248 256 154 154 282 282 
159 135 139 275 275 149 165 148 160 115 129 145 145 91 91 248 248 156 158 282 284 
161 129 139 267 279 149 153 158 158 113 113 145 155 91 91 236 240 152 158 276 286 
168 139 139 267 269 145 165 158 158 113 115 145 155 91 91 236 240 154 156 282 282 
169 131 135 257 257 145 145 158 170 113 121 145 145 91 91 248 256 154 154 282 282 
170 131 135 269 269 145 153 158 160 113 113 145 155 95 97 248 248 154 156 282 282 
172 135 139 261 269 145 163 150 160 115 129 145 147 91 95 240 248 154 156 282 290 
324 135 139 271 273 149 163 148 160 113 115 145 147 91 97 240 250 156 156 282 282 
333 139 141 257 267 153 163 148 160 113 129 145 145 91 97 240 256 150 154 282 290 
334 133 133 265 271 145 159 148 170 113 113 145 145 91 97 256 256 150 158 282 282 
337 139 139 257 259 153 159 148 158 107 113 145 159 95 95 240 244 160 172 282 282 
338 131 143 259 265 145 153 150 158 113 115 145 145 91 97 240 258 158 158 282 296 
340 139 139 267 267 163 165 148 158 113 115 145 155 91 95 248 248 152 156 282 290 
341 133 139 257 269 145 171 158 164 107 113 145 145 91 97 240 256 154 156 282 282 
113 135 139 257 269 153 171 148 160 113 131 145 145 91 91 244 280 162 164 282 282 
118 133 139 257 267 145 145 160 164 113 129 145 155 97 97 240 248 158 158 282 284 
309 135 139 267 271 145 153 160 160 113 123 145 145 91 91 256 256 154 156 292 292 
310 129 135 269 273 145 163 148 160 113 113 145 145 91 97 248 256 154 170 286 292 



 

 

343 129 131 267 267 131 179 156 158 115 115 145 145 91 97 246 272 154 156 286 292 
231 139 139 259 263 153 153 148 158 119 119 145 155 91 91 240 256 160 160 282 282 
235 129 139 263 269 153 153 158 160 113 127 145 155 91 91 240 248 156 158 282 286 
241 129 131 257 257 149 153 146 146 107 109 145 145 91 91 240 246 152 154 286 286 
243 135 139 257 259 145 155 148 160 113 115 145 145 97 97 246 246 154 156 282 286 
248 131 135 257 269 145 159 160 160 109 109 147 155 97 97 240 248 154 154 282 282 
252 129 129 259 269 149 173 158 158 121 121 145 145 93 97 236 250 160 160 282 290 
300 131 135 263 267 153 179 146 148 113 115 145 159 97 97 256 258 152 158 282 282 

A10_0
28 

129 135 263 269 163 173 160 162 113 115 145 145 95 97 256 276 152 154 290 292 

A11_0
28 

131 131 259 259 153 153 156 160 113 121 145 155 91 95 240 256 154 154 282 282 

A12_0
28 

129 135 259 267 165 179 148 160 115 115 145 155 91 93 256 272 154 154 292 292 

A13_0
28 

131 135 281 281 149 153 158 160 113 121 145 145 93 95 240 240 154 154 282 282 

A14_0
28 

135 135 273 281 149 173 156 160 121 127 145 145 91 91 256 272 154 156 282 286 

A20_0
38 

129 131 259 273 149 179 160 160 113 113 145 147 91 91 246 274 152 154 282 290 

A21_0
38 

129 135 259 259 149 149 160 168 107 107 145 145 97 97 250 250 154 154 284 290 

A22_0
38 

129 131 263 273 149 153 158 166 107 107 145 147 95 97 256 274 152 154 282 282 

A3_31
7 

135 139 267 267 159 163 148 160 107 115 145 155 91 91 274 278 148 156 282 290 

A4_31
7 

137 137 0 0 149 149 148 148 123 125 145 145 91 91 246 246 146 148 282 282 

A61_1
08 

131 139 267 267 159 163 152 156 107 113 145 145 91 91 256 256 154 156 290 290 

A62_1
08 

129 135 259 281 149 165 148 162 113 115 145 145 91 91 248 256 154 160 290 292 
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marker system on an investigation of European Hedgehog species 

and their hybrid zone dynamics 

Data Accessibility: Raw reads from the low‐coverage whole‐genome sequencing libraries used for 

marker development can be found in the Sequence Read Archive (SRA) under the reference 

PRJNA495814. The SSR allele sequences were submitted to GenBank and can be found with the 

reference numbers MH683170‐MH683548. 

Supplementary Table 2.1: Samples used with information of location of origin, species identification, starting material 
for DNA isolation, institution providing the sample, and coordinates. For some samples coordinates were not available 
(NA). 

Sample Name Region Species Material Material origin Coordinate 

36516 Berlin E. europaeus tissue Leibniz Institute for Zoo and Wildlife Research NA 

2014429 Bavaria E. europaeus tissue Biologiezentrum Linz 48.268194, 13.034333 

2014430 Bavaria E. europaeus tissue Biologiezentrum Linz 48.268194, 13.034333 

200689 Czech Republic E. europaeus tissue Biologiezentrum Linz 48.972278, 14.473722 

2006603 Czech Republic E. europaeus tissue Biologiezentrum Linz 48.735556, 14.491667 

2008188 Czech Republic E. europaeus tissue Biologiezentrum Linz 48.814528, 14.284139 

20111185 Czech Republic E. europaeus tissue Biologiezentrum Linz 48.846472, 14.455722 

20111186 Czech Republic E. europaeus tissue Biologiezentrum Linz 48.786028, 14.456222 

2004247 West Linz E. europaeus tissue Biologiezentrum Linz 48.343861, 14.720444 

2005615 West Linz E. europaeus tissue Biologiezentrum Linz 48.243000, 14.849889 

2006606 West Linz E. europaeus tissue Biologiezentrum Linz 48.358806, 14.511944 

2007102 West Linz E. europaeus tissue Biologiezentrum Linz NA 

2012159 West Linz E. europaeus tissue Biologiezentrum Linz 48.141556, 13.735889 

2016172 West Linz E. europaeus tissue Biologiezentrum Linz 48.336861, 14.435667 

2002243 Linz E. europaeus tissue Biologiezentrum Linz 48.337944, 14.311972 

2014439 Linz E. europaeus tissue Biologiezentrum Linz 48.336806, 14.313083 

2014456 Linz E. europaeus tissue Biologiezentrum Linz 48.331750, 14.312806 

2014839 Linz E. europaeus tissue Biologiezentrum Linz 48.334111, 14.326778 

2015786 Linz E. europaeus tissue Biologiezentrum Linz 48.334111, 14.326778 

200695 Linz E. europaeus tissue Biologiezentrum Linz 48.334111, 14.326778 

200792 Linz E. europaeus tissue Biologiezentrum Linz 48.332389, 14.312806 

2008219 East Linz E. europaeus tissue Biologiezentrum Linz 48.345444, 14.511917 

2014438 East Linz E. europaeus tissue Biologiezentrum Linz 48.254750, 14.424056 

2014581 East Linz E. europaeus tissue Biologiezentrum Linz 48.351444, 14.092444 

2014683 East Linz E. europaeus tissue Biologiezentrum Linz 48.322167, 14.194278 

2016171 East Linz E. europaeus tissue Biologiezentrum Linz 48.361806, 14.490889 

2014445 West Vienna E. europaeus tissue Biologiezentrum Linz 48.126806, 14.595306 

IBK1 Innsbruck E. europaeus saliva shelter Innsbruck NA 

IBK2 Innsbruck E. europaeus saliva shelter Innsbruck NA 

IBK3 Innsbruck E. europaeus saliva shelter Innsbruck NA 

IBK4 Innsbruck E. europaeus saliva shelter Innsbruck NA 
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IBK5 Innsbruck E. europaeus saliva 
shelter Innsbruck 

NA 

IBK6 Innsbruck E. europaeus saliva 
shelter Innsbruck 

NA 

IBK7 Innsbruck E. europaeus saliva 
shelter Innsbruck 

NA 

VA25 Voralberg E. europaeus saliva Sheter Bludenz NA 

VA26 Voralberg E. europaeus saliva Sheter Bludenz NA 

VA27 Voralberg E. europaeus saliva Sheter Bludenz NA 

VA28 Voralberg E. europaeus saliva Sheter Bludenz NA 

VA29 Voralberg E. europaeus saliva Sheter Bludenz NA 

VA30 Voralberg E. europaeus saliva Sheter Bludenz NA 

VA31 Voralberg E. europaeus saliva Sheter Bludenz NA 

2008174 Slovakia E. roumanicus tissue Biologiezentrum Linz 48.669667, 17.782222 

2008176 Slovakia E. roumanicus tissue Biologiezentrum Linz 48.619194, 20.634222 

2014420 Croacia E. roumanicus tissue Biologiezentrum Linz 47.770000, 16.801306 

2014417 Hungary E. roumanicus tissue Biologiezentrum Linz 47.629778, 16.636306 

201463 Macedonia E. roumanicus tissue Biologiezentrum Linz 44.061111, 18.589667 

200674 West Linz E. roumanicus tissue Biologiezentrum Linz 48.227417, 14.600472 

2006187 West Linz E. roumanicus tissue Biologiezentrum Linz 48.203833, 14.731222 

2008185 West Linz E. roumanicus tissue Biologiezentrum Linz 48.338028, 14.298750 

2009167 West Linz E. roumanicus tissue Biologiezentrum Linz 48.343083, 14.702861 

2014565 West Linz E. roumanicus tissue Biologiezentrum Linz 48.250528, 14.580056 

2014582 West Linz E. roumanicus tissue Biologiezentrum Linz 48.215444, 14.449528 

2014837 West Linz E. roumanicus tissue Biologiezentrum Linz 48.228361, 14.528750 

2016168 West Linz E. roumanicus tissue Biologiezentrum Linz 48.189111, 14.696389 

200669 Linz E. roumanicus tissue Biologiezentrum Linz 48.298472, 14.303611 

200675 Linz E. roumanicus tissue Biologiezentrum Linz 48.279750, 14.389139 

2006613 Linz E. roumanicus tissue Biologiezentrum Linz 48.282972, 14.287611 

2008184 Linz E. roumanicus tissue Biologiezentrum Linz 47.874333, 16.945667 

2014425 Linz E. roumanicus tissue Biologiezentrum Linz 48.327444, 14.327389 

2016169 Linz E. roumanicus tissue Biologiezentrum Linz 48.313000, 14.276139 

2012154 East Vienna E. roumanicus tissue Biologiezentrum Linz 48.279056, 16.635917 

2012155 East Vienna E. roumanicus tissue Biologiezentrum Linz 48.279056, 16.635917 

04NHMro East Vienna E. roumanicus tissue Natural History Museum NA 

2008186 Southeast Linz E. roumanicus tissue Biologiezentrum Linz 48.029833, 14.189528 

2014427 Southeast Linz E. roumanicus tissue Biologiezentrum Linz 48.042667, 13.989028 

2014838 Southeast Linz E. roumanicus tissue Biologiezentrum Linz 48.202389, 14.119889 

2008182 Neusidlesee E. roumanicus tissue Biologiezentrum Linz 46.435667, 15.904111 

2013168 Neusidlesee E. roumanicus tissue Biologiezentrum Linz 47.723167, 16.867111 

2014421 Neusidlesee E. roumanicus tissue Biologiezentrum Linz 47.770000, 16.801306 

2014422 Neusidlesee E. roumanicus tissue Biologiezentrum Linz 47.742889, 16.832861 

2014423 Neusidlesee E. roumanicus tissue Biologiezentrum Linz 48.206361, 14.380111 

2015109 Burgenland E. roumancius tissue Biologiezentrum Linz 47.060361, 16.315056 

KLF66 Klagenfurt E. roumanicus saliva Shelter Klagenfurt NA 

KLF67 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 

KLF70 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 

KLF72 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 

KLF73 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 

KLF76 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 
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KLF80 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 

KLF82 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 

KLF83 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 

KLF84 Klagenfurt E. roumanicus saliva 
Shelter Klagenfurt 

NA 

 



 

 

Supplementary Table 2.2: Complete list of all primers designed with the following information: from which species they were designed (Species), in which primer mix they were included in 
the multiplex PCR (Mix), repetition motif (Motif), number of times it was repeated in the original sequence (Nr. Repeats), primer sequence (Forward and Reverse) and allele length 
variation (Amplicon length variation). 

Primer 

Name Species Mix Motif Nr. Repeats Forward Reverse Amplicon length variation 

E1 E. roumanicus R1 AC 16 TCATGCTAGGCACTGCTATT AAGTGCAATCAGACCAGTGA 454 - 486 

E11 E. roumanicus R1 AAAG 7 ACGTTCCTCTCTGGGGAATA TTCAAGACCCTGTTCTCCAC 428 - 460 

E18 E. roumanicus R1 ATTTT 9 TAGCCTGGGGGAAAATCAAG GCAATTTCCAGTAGAGGGGA 438 - 475 

E26 E. roumanicus R1 CAA 10 TTAAGGAACTCAGGGTTGGG GTGTCAATGGAAGCAAAGCT 487 - 502 

E29 E. roumanicus R1 TCAA 7 CTTGTGCACTGTGATGTGAG ACGAAGTTTCCAGGAAGCTC 486 - 494 

E31 E. roumanicus R1 AACA 7 GGAAGCGCCTTCATTATAGC CTCCTGTCACTAGCCAGAAG 476 - 484 

E36 E. roumanicus R1 GAAAG 9 ACAGTGAAGACAGGGAAGC CTTAAAATGGCTAAGGTGGT 452 - 517 

E4 E. roumanicus R1 CT 13 TCAAGGAGTGTGTTGACCAG ATCCCTTTGCTCAGCCAAT 452 - 462 

E9 E. roumanicus R1 ATT 13 GTTGACACTCTTTGCTGCTT CAAGTCCTCACTAAGCCTGT 425 - 444 

E10 E. roumanicus R2 AAAG 11 AAGCACAACAACAATGGCAA ACGTACTGAGCCTTTCAAGA 437 - 545 

E16 E. roumanicus R2 AAGAA 12 CACTAGGCAGAAAACACACG ACCACAGATGCTGTAGACAG 425 - 480 

E2 E. roumanicus R2 AC 16 TGGGTAGCAGCTAAAGGAAG GACAAAATCCTCCCTGGCTA 448 - 482 

E27 E. roumanicus R2 TTG 9 AGATGCTCAAGGGAAACTGA TCACAGCATACTTAGGAGCC 452 - 477 

E30 E. roumanicus R2 TCAC 8 AGCGTTAAATACATCCGGCT AACCCATTGACTCTCTGACA 430 - 458 

E34 E. roumanicus R2 TCTA 10 AGACCACAGTGTCCAAGTTT GATTTCCCCTGTGTAGGTGA 428 - 466 

E35 E. roumanicus R2 AAAAT 6 TGGGTTGTAGATAACACTCA ACTGCAGGTGGAGATATGTG 464 - 482 

E37 E. roumanicus R2 CTTTT 7 CTGCAGTTTGCTCTGGATTC AAGAAAGAAGCCCTTGTCCA 426 - 456 

E5 E. roumanicus R2 GA 17 TTTCTTGCTCAGAACCCTGA CAGGGGGAATGCTTTTCAAG 446 - 480 

E7 E. roumanicus R2 AAT 10 ACCATAGCTTTGTAATCTCCT AGGATGATGGCCCTTTGAAA 445 - 463 

E13 E. roumanicus R3 AAGG 11 AGGTAGAAGGCAGACAATGG TTGAAACACTGACGTAGGCT 428 - 476 

E19 E. roumanicus R3 GAAAT 12 CCTTGCTTGTTTCCTAAGCC ATCACTGGGACTCCCTCAAT 472 - 527 

E20 E. roumanicus R3 TATTC 11 TGGATGGATGGAAAACTGAGA GGGTGCTGATTCATCTACCT 477 - 522 

E22 E. roumanicus R3 AG 15 ACGGAAGGAAATACTGCCAA CCTTCCCCTTTGTGAGAACT 470 - 502 

E23 E. roumanicus R3 CCT 8 GGCTATAGGCAGATTGGTGT GAAGGTCCCAGGAACCATAG 441 - 504 

E24 E. roumanicus R3 GCA 7 TTCTGAGGTCTCATCTGTGC CTGTCTGTGGTCCAGGAAAG 452 - 452 

E28 E. roumanicus R3 TTG 8 CCTAGTGGTAGCTTCTCACA TTGGCTCCAGTCAAGTTCTC 440 - 452 

E3 E. roumanicus R3 CA 17 GGCAGACTGTCTAGTTCACA GGTCTAGGACTGCACCATTT 476 - 512 

E8 E. roumanicus R3 ATT 8 CCTCCAGGAGAGATTTTGCT CAAATGAGTGGAAGCCATGC 489 - 498 

W1 E. europaeus E1 AAAAT 7 GGGTAAAACAGGTCTGATGT AAACTTGTCAGGAAGCAGTT 382 - 407 

W10 E. europaeus E1 AAAAC 7 ATAGCTGGATAGTGGTCTGG ACATCTTTTCTTCCTCACAGT 398 - 433 

W11 E. europaeus E1 CTTC 10 AGTCACCATTCTCCACTTTC ACCCTGAGTGAAGAAGGATA 413 - 435 



 

 

W12 E. europaeus E1 GAAA 8 AACTCAAATTACAAGGGGCC TCCAATAACTAGGGGTTTAAGT 386 - 474 

W13 E. europaeus E1 TTTA 7 TTTCACTCTGGGTTACTGTG AAGTGGTGCAACTCTAAGAC 386 - 395 

W14 E. europaeus E1 ATAG 10 AAAAGGACCTAAATGGGAGG ACAGGGAACAAAGATGCTTA 376 - 408 

W15 E. europaeus E1 ATAA 8 ATACTCCCAGCCTGTTTCTA ACCTCCCAAGAACTCTATCA 367 - 390 

W16 E. europaeus E1 TTAA 7 GTGTAAAGCAGTATGTTGCC AATACAGTGTACAAGGACGC 407 - 419 

W18 E. europaeus E1 AATA 8 ACTCAAAAGTTTTCCACCCT TTTTAGGCTCTGCTCTTCTG 403 - 411 

W19 E. europaeus E1 TTCT 13 AGAGATCAGACTAACGTTTTT GGGGAGAATTTGGTACTGTA 402 - 443 

W21 E. europaeus E1 TTTA 7 ACTTCACTATCACCCTTCAA ACTTGATTTGTTTATGGGGTG 395 - 403 

W23 E. europaeus E1 TGGA 13 TCTTCCCTTAAGCTACTGGA TCTCAATTGTTTAGACATTGAGT 386 - 414 

W29 E. europaeus E1 CT 15 CATTACCGTGCACACAGA GTTTGATCCCCACCACTTAA 406 - 422 

W30 E. europaeus E1 CT 17 TCTCATTGGATAGTGCACTG TGCCTAATAGCAAATACACA 405 - 441 

W31 E. europaeus E1 GA 20 CACTTTCAATGCAGAACGTG CAAACTGGACTAGGACAGAG 397 - 423 

W32 E. europaeus E1 GT 13 CAGTCAATGCATTCCCAATC TGTGTGGTACAGGGAATAGA 415 - 451 

W33 E. europaeus E1 CA 11 AGAAAAGACCTCAGGAGACT CCTGGAGAGTGGAAAAGTTA 424 - 456 

W6 E. europaeus E1 TTATT 7 AGGAGTTCTCAGTGATGAGA AATACAGGCTCTGGGATAGT 378 - 404 

W7 E. europaeus E1 TCTTT 9 TTAGCTTGGTTTTCACAGGT GAGTGGCAGTCTTCAAGTAG 384 - 419 

W8 E. europaeus E1 TTCCT 10 ATAGGAGGACTGGCGATC AATGGAGGGAGTAGATGGG 364 - 424 

W9 E. europaeus E1 TTTCT 10 TTCAATCTCAAGTACCACATT GATGCACCTGGTTGAGAG 384 - 414 

E32 E. roumanicus R3 ATCT 7 TGACAGTGTGTGGTTGACTT TTCACCATCGCAGAGAACAT Failed in Multiplex 

E25 E. roumanicus R1 TAC 9 TGTTATCATGCCTGAGGACC CTGGTTGGGAAGAGAAACCT Failed in Multiplex 

E6 E. roumanicus R1 AAT 16 CTCTTGGTGTGCATGACAAG CTGTGACCCGTGTAGTTGG Failed in Multiplex 

W20 E. europaeus E1 TAGA 8 TGCACATTACAATGTTCAAGG TACATCAGGGAGAGTACAGG Failed in Multiplex 

W24 E. europaeus E1 ATA 13 GCAATAATAACAAGAAGGGCA AAGAAGTGACTGGTTTGGAG Failed in Multiplex 

W25 E. europaeus E1 TTA 14 CTTTATGGGGTGCAGAAGAT CACGATGAGCAAAGCTATTC Failed in Multiplex 

W26 E. europaeus E1 TAT 15 TTTCCAGAAGATGTGGTCAG TACAAATCTCAGCACCACTC Failed in Multiplex 

W27 E. europaeus E1 ATA 9 AGCCAAAGAATAGAAGCAAGA GCATTCTGTGGTCATGAGTA Failed in Multiplex 

W3 E. europaeus E1 AAAGA 6 GAAGAAGTTTCCTCCTCTGG GGTGGACTGAACCATTTCTT Failed in Multiplex 

W5 E. europaeus E1 AAAAT 8 CACCAGGTTAAGCGTACATA AAAAGTGCTACTAGGGAAGC Failed in Multiplex 

E12 E. roumanicus Failed in single PCR AAAG 7 AACAGAACAGCCCTGATGTT TTGTCTTGCTTCTGGTGAGT Failed in single PCR 

E14 E. roumanicus Failed in single PCR AAGG 13 ACATGACTGTGGGTTGAGTG CTCCAGCTCCACTGCTTTAG Failed in single PCR 

E15 E. roumanicus Failed in single PCR AAATA 7 CTGGATCAGTGAAGCTTCCA CAAACTGGGTTAAGTGCACA Failed in single PCR 

E17 E. roumanicus Failed in single PCR ATTCC 18 ACAACCCTTCAGCTTCATCA TAGTAGGGTGAGTCTCTGGG Failed in single PCR 

E21 E. roumanicus Failed in single PCR GA 14 TACCCATTATGCTACCCACC TTCTGGTACATGTGCTACCG Failed in single PCR 

E33 E. roumanicus Failed in single PCR ATCT 13 CTCCATCACATGTGCCAAAG CCACTGGCATACTACTGTGT Failed in single PCR 

W17 E. europaeus Failed in single PCR GAAA 9 TGTGATGAGGTGTTTGTTCT AGATTTGTTGCAGGTGTCTC Failed in single PCR 

W2 E. europaeus Failed in single PCR AAATA 8 CATGAATCCACTGCTCCTAG CTGTAGAGGTGTTGTTTTGC Failed in single PCR 

W22 E. europaeus Failed in single PCR AGGA 14 CTCATTGCAGGAAACTTCAC GTTGTATTGTCTTATTTGGAGGT Failed in single PCR 



 

 

W28 E. europaeus Failed in single PCR AC 16 TTCTTGTTAGACCCTGAAGC GTGACACTGGGACTCAAAC Failed in single PCR 

W34 E. europaeus Failed in single PCR AG 15 AGGGAACTGCACTATGTCTA GCACACCTGGTTAAACACAT Failed in single PCR 

W4 E. europaeus Failed in single PCR TTTTG 7 ACTGAAGGAAGCTTCTGTG GTAGTCTTTGAGCTTTGTGC Failed in single PCR 
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Supplementary Table 2.3: Descriptions and procedures used in the in-house-scripts. We used the scripts one after the 
other and information concerning how this was done can be found in the material and methods. The scripts 1 to 2 can 
be run sequentially using the wrapper microsatPip. 

microsatPip 

File name: microsatPip.sh 

Requirements: Unix, scripts 1 and 3 in the same directory of microsatPip.sh 

Description: This is wrapper script that runs the programs FASTQC, PEAR, plus the scripts 1 to 3 

one after the other. The results from each step are saved in a directory containing the seven folder. 

Initially the it runs the program FASTQC where the output is saved in the folder ‘FastqcOut’. The it 

sorts the read according to name saving them in the directory ‘Sorted’. Sorted reads are then merged 

with PEAR and saved in the folder ‘MergedOut’. Files are renamed based on a user inputted sample 

sheet. Samples names should not contain any spaces or underscores. The renamed files are saved in 

the folder ‘SeparatIn’ and used for demultiplexing. Demultiplexed fastq files are saved in the folder 

‘SeparatOut’. Sequence lengths counts are determined and saved in one text file per sample per 

markers in the directory ‘MarkerStatistics’. The csv codominant matrix and sequence length plots 

produced by script 3 are saved on the ‘Markerplots’ directory. 

How to run: ./microsatPip.sh [1] [2] [3] [4] [5] 

extract_reads_correct_primer_merged.py [1] [2] [3] [4] [5] 

[1] Directory containing input fastq files.  

[2] Quality threshold from which sequences should be filtered in quality control step. 

[3] File containing primer information: this should be a tab separated text file containing one locus per 

line with the following information: 

maker name[TAB]sequence primer forward[TAB] sequence reverse primer 

Markers should be named in the following way: MarkerName_RepetitionMotif (ex: HH1_AT) 

[4] File containing sample names information: this should be a coma separated file containing one 

sample per line with the following format: Name in input fastq before the first underscore , new name. 

For example, for the paired reads files: P5-1-P7-1_L001_R1_001.fastq, P5-1-P7-

1_L001_R2_001.fastq to be replaced with the name Sample1, this should have the following format: 

P5-1-P7-1,Sample1 
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Script number 1 

File name: primer_demultiplex.py 

Requirements: python 2 or 3; Biopython 

Description: This script demultiplexes merged fastq files according to primer content. The 

outputs are one fastq file per sample and per locus. This script allows for a user specified 

maximum number of mismatches between the primer and the reads. Only reads with a mismatch 

to both primers below to the defined are kept. In this case they are saved in a separate file. 

Moreover, sequences below a certain length can be excluded.  

How to run: python extract_reads_correct_primer_merged.py [1] [2] [3] [4] [5] 

[1] Directory containing input fastq files. Files should be named without the underscored 

character (ex: Sample1.fastq) 

[2] File containing primer information: this should be a tab separated text file containing one 

locus per line with the following information: 

maker name[TAB]sequence primer forward[TAB] sequence reverse primer 

Markers should be named in the following way: MarkerName_RepetitionMotif (ex: HH1_AT) 

[3] Maximum number of mismatches 

[4] Minimum sequence length 

[5] Directory to save output files. Files names are save in the following format: 

RepetitionMotif_SampleName_MarkerName.fasq (ex: Sample1_HH1_AT.fastq)  
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Script number 2 

File name: CountLengths.sh 

Requirements: Unix system 

Description: Per fastq file it counts the number of occurrences of each sequence length 

present. It outputs this information in a space separated text file being the first column the 

length and the second the number of occurrences. Example: 

417 14 

422 18 

418 276 

423 282 

How to run: sh CountLengths.sh [1] [2] 

[1] Directory containing input demultiplexed fastq files. Files should be as described in the 

output from script 1: RepetitionMotif_SampleName_MarkerName.fasq (ex: 

Sample1_HH1_AT.fastq) 

[2] Directory to save output files. Output file is saved in the following format: 

MarkerName_RepetitionMotif_SampleName_.statistics (ex: HH1_AT_Sample1_.statistics) 

 

Script number 4 

File name: extract_alleles.py 

Requirements: python 2 or 3; Biopython. 

Description: It extracts all sequences with the same length of the alleles saved in the csv file 

produced by script number 2 and saves them in a fasta file per sample and allele. 

How to run: python extract_alleles_of_a_certain_length_v2.py [1] [2] [3] 

[1] Coma separated text file containing genotypes. This file should contain a header containing the 
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marker information. The next lines it contains the genotype information. Th first column should 

contain the sample names while the remaining the genotype information. Two columns per markers 

should be added allowing for heterozygote genotypes. Missing data should be coded as 0. Example: 

samplename HH1_TA HH1_TA HH2_TGT HH2_TGT HH3_AAAC HH4_AAAC 

Sample1 425 425 429 426 418 418 

Sample2 423 425 429 429 0 0 

Sample3 0 0 429 429 414 414 

Sample4 427 427 426 426 418 418 

[2] Directory containing input fastq files. These are the output from script 1. 

[3] Directory to save output fasta files. These files are named in the following format: 

MarkerName_SampleName_Al_SequenceLength.fasta (ex: HH1_AT_Sample1_Al_425.fasta) 

 

Script number 5 

File name: get_consensus_and_freq.py 

Requirements: python 2 or 3. 

Description: It produces a consensus sequence per file keeping bases above a certain similarity 

threshold. For positions where this is not meet the script outputs a ‘N’. 

How to run: python get_consensus_and_freq.py [1] [2] [3] 

[1] Directory containing input fasta extracted based on length genotype information (output from 

script 4) 

[2] Directory to save the consensus files. Files will be named in the following format: Marker 

Name_Sample Name_Al_Sequence Length_C Numer Of Sequences Used_Consensus 

Threashold.fasta (ex: HH1_AT_Sample1_Al_425_C881_70.fasta) 

[3] Similarity of frequency threshold in an integer form. The value of 0.7 will do a 70% consensus. 
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Script 6 

File name: correct_allele_sequence.py 

Requirements: python 2 or 3 

Description: In case a sequence has an ambiguous base (‘N’) after the consensus and it is 

homozygote based on sequence length (SL), it divides the sequence into two new ones. The Ns are 

corrected based on the frequency that the N position shows up in the reads extracted from script 4 

taking the two most frequent nucleotide combinations. In case of heterozygote genotype based on 

SL the sequence is not divided but only corrected with the most frequent nucleotide information. 

How to run: python correct_allele_sequence.py [1] [2] [3] [4] 

[1] fasta file containing all consensus sequences from one marker. File name should be 

MarkerName.fasta (ex: HH1_AT.fasta). Sequences should be named in the following format: 

MarkerName_SampleName_Al_SequenceLength_CNumerOfSequencesUsed_ConsensusThreashold 

(ex: >HH1_AT_Sample1_Al_425_C881_70) 

[2] Directory containing sequences extracted based on length genotypes (output from script 4) 

[3] Minimum number of sequence counts required for an allele to be condidered 

[4] Name of the output fasta file 

Script number 7 

File name: call_alleles_from_fasta.py 

Requirements: python 2 or 3. 

Description: Uses the haplotypes obtained from the SNP correction process and converts them into 

allele’s numbers. If a haplotype can be assigned to more than one allele it is saved as missing data. 

The results are saved in tab separated text file in the format of a codominant matrix (*matrix.txt). 

Allele’s numbers and which haplotypes they correspond to are saved in file ending with 

*allelle_list.txt with the following format: 

Marker 1 

Allele 1: Haplotype 
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Allele 2: Haplotype 

… 

Marker 2 

… 

How to run: python call_alleles_from_fasta.py [1] [2] [3] [4] [5] 

[1] Directory containing haplotypes per locus in fasta format (output from script 7) 

[2] Prefix common to all input files (ex: HH in marker HH1) 

[3] List of samples names to be considered. This should be a text file with one sample name per line) 

[4] Prefix that should be used to save output files 

[5] Minimum number of sequences required to for a haplotype to be consider 



 

 

Supplementary Table 2.4: Amplification success shown as percentage of missing data and variability measures: Na – number of alleles, HO – observed heterozygosity, HE – expected 
heterozygosity and PIC – polymorphism information content. Values calculated based on sequence information are represented by the superscript S while the ones based on length 
information by L. The last seven markers separated from the remaining ones correspond to the markers excluded for the complete analyses either by excess of missing data or lack of 
variation. 

Marker 
All samples E. europaeus E. roumanicus 

% missing NaS NaL HO
S HO

L HE
S HE

L PICS PICL % missing NaS NaL HO
S HO

L HE
S HE

L PICS PICL % missing NaS NaL HO
S HO

L HE
S HE

L PICS PICL 

E1 31,71 21 19 0,79 0,77 0,91 0,91 0,89 0,89 43,90 13 13 0,91 0,91 0,79 0,79 0,85 0,75 19,51 14 12 0,70 0,67 0,88 0,87 0,75 0,84 

E10 46,34 12 10 0,61 0,55 0,85 0,82 0,83 0,79 85,37 6 6 0,17 0,17 0,86 0,86 0,79 0,76 7,32 9 7 0,68 0,61 0,82 0,78 0,76 0,75 

E11 9,76 22 12 0,68 0,61 0,92 0,86 0,91 0,84 17,07 13 10 0,68 0,65 0,86 0,84 0,84 0,80 2,44 15 8 0,68 0,58 0,87 0,77 0,83 0,72 

E13 0,00 37 12 0,76 0,68 0,94 0,88 0,93 0,86 0,00 26 10 0,88 0,73 0,94 0,89 0,82 0,87 0,00 18 12 0,63 0,63 0,85 0,84 0,93 0,80 

E16 1,22 16 11 0,70 0,68 0,90 0,86 0,88 0,84 2,44 10 9 0,75 0,75 0,86 0,86 0,86 0,83 0,00 13 8 0,66 0,61 0,88 0,83 0,83 0,79 

E18 9,76 8 6 0,41 0,24 0,78 0,65 0,74 0,59 17,07 4 3 0,38 0,03 0,54 0,06 0,60 0,06 2,44 7 6 0,43 0,43 0,64 0,63 0,42 0,59 

E19 2,44 12 7 0,33 0,20 0,69 0,62 0,66 0,56 2,44 3 2 0,03 0,00 0,07 0,05 0,79 0,05 2,44 12 7 0,63 0,40 0,82 0,67 0,07 0,61 

E2 8,54 23 12 0,63 0,60 0,87 0,82 0,85 0,79 17,07 17 10 0,71 0,65 0,88 0,84 0,63 0,80 0,00 11 7 0,56 0,56 0,67 0,63 0,86 0,58 

E20 32,93 19 18 0,49 0,49 0,92 0,92 0,91 0,91 39,02 12 12 0,48 0,48 0,88 0,88 0,80 0,85 26,83 11 11 0,50 0,50 0,84 0,84 0,85 0,80 

E22 0,00 15 11 0,51 0,35 0,83 0,71 0,81 0,68 0,00 7 5 0,39 0,10 0,54 0,12 0,82 0,12 0,00 13 10 0,63 0,61 0,84 0,84 0,47 0,81 

E23 10,98 49 15 0,99 0,97 0,94 0,85 0,93 0,83 19,51 28 13 0,97 0,97 0,94 0,87 0,85 0,84 2,44 25 6 1,00 0,98 0,87 0,64 0,92 0,58 

E26 30,49 8 6 0,37 0,16 0,76 0,60 0,71 0,54 41,46 6 5 0,33 0,33 0,61 0,61 0,43 0,55 19,51 4 3 0,39 0,03 0,54 0,09 0,56 0,09 

E27 0,00 7 4 0,12 0,09 0,57 0,56 0,48 0,46 0,00 6 3 0,15 0,07 0,37 0,31 0,24 0,27 0,00 3 3 0,10 0,10 0,26 0,26 0,33 0,24 

E28 1,22 7 4 0,27 0,11 0,72 0,60 0,67 0,51 2,44 7 4 0,25 0,18 0,49 0,40 0,40 0,35 0,00 5 3 0,29 0,05 0,47 0,12 0,44 0,11 

E29 23,17 11 3 0,37 0,21 0,83 0,47 0,81 0,37 21,95 6 2 0,38 0,13 0,66 0,31 0,71 0,26 24,39 8 3 0,35 0,29 0,75 0,54 0,61 0,42 

E3 37,80 23 14 0,45 0,41 0,89 0,87 0,87 0,85 17,07 10 8 0,50 0,50 0,77 0,77 0,90 0,72 58,54 15 9 0,35 0,24 0,94 0,86 0,73 0,82 

E30 0,00 8 5 0,46 0,33 0,78 0,69 0,75 0,64 0,00 5 4 0,34 0,10 0,58 0,27 0,65 0,25 0,00 6 4 0,59 0,56 0,71 0,69 0,51 0,61 

E31 9,76 5 3 0,30 0,26 0,66 0,64 0,60 0,57 17,07 3 3 0,06 0,06 0,09 0,09 0,53 0,08 2,44 5 3 0,50 0,43 0,61 0,55 0,08 0,44 

E34 0,00 12 8 0,51 0,40 0,84 0,77 0,82 0,73 0,00 9 7 0,39 0,20 0,65 0,39 0,77 0,37 0,00 11 8 0,63 0,61 0,80 0,79 0,62 0,75 

E35 21,95 5 5 0,13 0,13 0,61 0,61 0,55 0,55 29,27 5 5 0,28 0,28 0,61 0,61 0,11 0,56 14,63 3 3 0,00 0,00 0,11 0,11 0,56 0,11 

E36 9,76 35 13 0,78 0,62 0,95 0,90 0,94 0,88 17,07 23 12 0,82 0,56 0,92 0,85 0,87 0,82 2,44 19 10 0,75 0,68 0,89 0,87 0,90 0,84 

E37 0,00 7 5 0,33 0,29 0,73 0,70 0,69 0,65 0,00 5 4 0,12 0,07 0,35 0,27 0,67 0,25 0,00 7 5 0,54 0,51 0,73 0,72 0,33 0,65 

E4 10,98 9 4 0,34 0,26 0,69 0,64 0,62 0,56 17,07 6 3 0,18 0,03 0,27 0,09 0,47 0,08 4,88 6 4 0,49 0,46 0,55 0,54 0,26 0,44 

E5 47,56 16 15 0,21 0,21 0,70 0,65 0,68 0,63 34,15 6 5 0,11 0,11 0,39 0,27 0,86 0,26 60,98 13 13 0,38 0,38 0,90 0,90 0,37 0,86 



 

 

E8 34,15 7 4 0,24 0,17 0,69 0,57 0,66 0,49 9,76 3 2 0,30 0,19 0,50 0,39 0,66 0,31 58,54 5 4 0,12 0,12 0,72 0,70 0,43 0,64 

E9 19,51 11 7 0,52 0,42 0,81 0,58 0,78 0,54 17,07 9 6 0,94 0,79 0,70 0,59 0,54 0,54 21,95 6 4 0,06 0,03 0,59 0,53 0,66 0,47 

W10 1,22 10 8 0,38 0,38 0,72 0,66 0,68 0,62 2,44 7 6 0,65 0,65 0,78 0,77 0,18 0,72 0,00 6 4 0,12 0,12 0,19 0,16 0,73 0,16 

W11 29,27 23 10 0,53 0,48 0,93 0,88 0,91 0,86 19,51 20 8 0,73 0,64 0,94 0,83 0,71 0,80 39,02 7 6 0,28 0,28 0,76 0,72 0,92 0,65 

W12 2,44 50 22 0,79 0,75 0,97 0,93 0,96 0,92 0,00 20 14 0,80 0,78 0,94 0,89 0,94 0,87 4,88 34 12 0,77 0,72 0,96 0,84 0,92 0,81 

W14 1,22 15 8 0,63 0,62 0,88 0,77 0,87 0,73 0,00 10 7 0,56 0,54 0,80 0,77 0,71 0,73 2,44 7 6 0,70 0,70 0,75 0,73 0,76 0,68 

W16 19,51 7 4 0,41 0,21 0,49 0,25 0,46 0,23 12,20 5 3 0,42 0,31 0,41 0,31 0,45 0,29 26,83 4 3 0,40 0,10 0,54 0,16 0,38 0,15 

W19 19,51 23 15 0,64 0,62 0,92 0,89 0,90 0,88 7,32 13 9 0,55 0,53 0,88 0,85 0,85 0,82 31,71 16 13 0,75 0,75 0,88 0,85 0,86 0,82 

W21 40,24 4 2 0,12 0,12 0,61 0,35 0,54 0,29 51,22 3 2 0,10 0,10 0,56 0,51 0,16 0,37 29,27 4 2 0,14 0,14 0,16 0,13 0,44 0,12 

W23 1,22 11 8 0,59 0,58 0,84 0,83 0,81 0,80 0,00 7 6 0,68 0,66 0,74 0,73 0,60 0,67 2,44 7 7 0,50 0,50 0,66 0,66 0,68 0,60 

W29 13,41 14 9 0,61 0,58 0,87 0,80 0,85 0,77 7,32 10 9 0,71 0,71 0,84 0,84 0,59 0,80 19,51 7 5 0,48 0,42 0,66 0,63 0,81 0,55 

W30 14,63 30 23 0,69 0,67 0,93 0,92 0,92 0,91 0,00 17 11 0,66 0,63 0,86 0,82 0,86 0,80 29,27 16 15 0,72 0,72 0,88 0,88 0,85 0,85 

W31 0,00 33 19 1,00 1,00 0,93 0,90 0,92 0,89 0,00 23 15 1,00 1,00 0,89 0,85 0,80 0,83 0,00 14 10 1,00 1,00 0,83 0,78 0,87 0,75 

W32 45,12 9 9 0,42 0,42 0,57 0,57 0,54 0,54 4,88 5 5 0,41 0,41 0,46 0,46 0,72 0,42 85,37 6 6 0,50 0,50 0,82 0,82 0,42 0,72 

W5 23,17 13 8 0,60 0,46 0,88 0,78 0,86 0,75 31,71 8 5 0,46 0,46 0,80 0,71 0,71 0,64 14,63 9 6 0,71 0,46 0,76 0,54 0,75 0,48 

W7 1,22 16 9 0,69 0,69 0,90 0,84 0,89 0,82 0,00 11 9 0,73 0,73 0,83 0,82 0,77 0,78 2,44 10 7 0,65 0,65 0,80 0,80 0,79 0,76 

W8 0,00 29 23 0,85 0,84 0,95 0,94 0,94 0,93 0,00 23 17 0,80 0,78 0,92 0,88 0,91 0,86 0,00 16 16 0,90 0,90 0,92 0,92 0,90 0,91 

W9 37,80 15 9 0,45 0,43 0,89 0,85 0,87 0,82 14,63 9 7 0,57 0,54 0,82 0,79 0,76 0,75 60,98 9 7 0,19 0,19 0,81 0,80 0,78 0,75 

E24 1,22 1 1 0,00 0,00 0,00 0,00 0,00 0,00 2,44 1 1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1 1 0,00 0,00 0,00 0,00 0,00 0,00 

E7 54,88 9 6 0,11 0,11 0,74 0,59 0,70 0,50 65,85 6 5 0,29 0,29 0,76 0,52 0,41 0,47 43,90 5 3 0,00 0,00 0,44 0,41 0,69 0,35 

W1 53,66 11 6 0,21 0,21 0,82 0,77 0,78 0,72 26,83 7 6 0,23 0,23 0,72 0,71 0,65 0,64 80,49 4 3 0,13 0,13 0,74 0,69 0,67 0,58 

W13 67,07 5 5 0,22 0,22 0,60 0,60 0,55 0,55 92,68 2 2 0,00 0,00 0,53 0,53 0,54 0,35 41,46 4 4 0,25 0,25 0,60 0,60 0,35 0,54 

W15 62,20 5 4 0,00 0,00 0,39 0,39 0,37 0,36 80,49 5 4 0,00 0,00 0,80 0,73 0,00 0,63 43,90 1 1 0,00 0,00 0,00 0,00 0,71 0,00 

W18 58,54 4 3 0,18 0,00 0,54 0,39 0,49 0,34 82,93 2 2 0,00 0,00 0,44 0,44 0,28 0,33 34,15 3 2 0,22 0,00 0,32 0,07 0,33 0,07 

W33 57,32 10 7 0,43 0,40 0,63 0,56 0,61 0,53 19,51 9 6 0,42 0,39 0,58 0,53 0,56 0,49 95,12 3 3 0,50 0,50 0,83 0,83 0,56 0,56 
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Supplementary Figure 2.1: Correlation between geographical and genetic distance among individuals. Distances was 
calculated among individuals because of lack of population sampling. Upper graph includes individuals from E. 
europaeus only while the bottom one contains individuals from E roumanicus. errata Error: E. europeaus Correction: 
E. europaeus 
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Supplementary Figure 2.2: Structure analyses for all three datasets (all samples, only E. europaeus, only E. roumanicus) 
considering all markers and alleles called based on both sequence and length information. Only the results for the 
optimum K values are shown: K=2 for all samples; K=3 for E. europaeus; and K=5 for E. roumanicus. 
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Supplementary Figure 2.3: Structure analyses for all three datasets (all samples, only E. europaeus, only E. roumanicus) 
considering markers developed specifically for E. roumanicus (R) and E. europaeus (E) and alleles called based on 
sequence information. Only the results for the optimum K values are shown: K=4 for E. europaeus; K=3 for E. 
europaeus 
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4 Supplementary information Chapter 4: Distinguishing spatial from 

temporal effects in disturbance biology: Hedgehogs in the urban 

matrix of habitat fragmentation and noise pollution 

Supplementary Table 4.1: Linear model, outcome of ANOVA and results of the multiple comparisons of MCP95 

lme_mcp <- lme(mcp95_area ~ treatment*sex, random = ~ 1|animal_id, res.new, 
  weights = varPower()) 
Anova(lme_mcp) 
## Analysis of Deviance Table (Type II tests) 
##  
## Response: mcp95_area 
##   Chisq Df Pr(>Chisq)  
## treatment 54.8210 2 1.247e-12 *** 
## sex  6.4797 1 0.01091 *  
## treatment:sex 1.7432 2 0.41828  
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
summary(glht(mod_mcp_plot, linfct = mcp(inter_Treat_Sex = K)))  
## Simultaneous Tests for General Linear Hypotheses 
##  
## Multiple Comparisons of Means: User-defined Contrasts 
##  
## Fit: lme.formula(fixed = mcp95_area ~ inter_Treat_Sex, data = res.new,  
## random = ~1 | animal_id, weights = varPower()) 
##  
## Linear Hypotheses: 
##  Estimate Std. Error z value Pr(>|z|) 
## pre-festival_m - pre-festival_f == 0 1.8968 0.6891 2.753 0.0327* 
## festival_f - pre-festival_f == 0 -1.0290 0.2214 -4.648 <0.001*** 
## fragmented_f - pre-festival_f == 0 1.9421 0.6945 2.796 0.0291* 
## festival_m - pre-festival_m == 0 -1.4665 0.3770 -3.890 <0.001*** 
## fragmented_m - pre-festival_m == 0 0.7302 0.8663 0.843 0.9200 
## fragmented_m - fragmented_f == 0 0.6849 0.8706 0.787 0.9389 
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## (Adjusted p values reported -- single-step method) 
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Supplementary Figure 4.1: Multiple Comparisons of Means for the MCP95 

 

Supplementary Figure 4.2: Results of the KDE50 

Supplementary Table 4.2: Linear model, outcome of ANOVA and results of the multiple comparisons of KDE50 

mod_kde <- lme(kde50_area ~ treatment*sex, random = ~ 1|animal_id, res.new, 
 weights = varPower()) 
car::Anova(mod_kde) 
## Analysis of Deviance Table (Type II tests) 
##  
## Response: kde50_area 
##  Chisq Df Pr(>Chisq)  
## treatment 44.9871 2 1.703e-10 *** 
## sex 10.2643 1 0.001356 **  
## treatment:sex 5.6387 2 0.059644 . 
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Supplementary Table 4.3: Linear model, outcome of ANOVA and multiple comparisons for speed 

mod_speed <- lmer(sqrt(speed) ~ treatment*sex + (1 |animal_id), mydata.sf.EOBS) 
 
Anova(mod_speed) 
 
mod_speed_res <- multcomp::glht(mod_speed, linfct = multcomp::mcp(treatment = "Tukey"), 
interaction_average = FALSE, covariate_average = TRUE) 
 
Simultaneous Tests for General Linear Hypotheses 
##  
## Multiple Comparisons of Means: Tukey Contrasts 
##  
##  
## Fit: lmer(formula = sqrt(speed) ~ treatment * sex + (1 | animal_id),  
## data = mydata.sf.EOBS) 
##  
## Linear Hypotheses: 
##     Estimate Std. Error z value Pr(>|z|)  
## festival - pre-festival == 0 -0.005701 0.001715 -3.325 0.00206 **  
## fragmented - pre-festival == 0 0.025613 0.008429 3.038 0.00511 **  
## fragmented - festival == 0 0.031314 0.008425 3.717 < 0.001 *** 
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## (Adjusted p values reported -- single-step method) 

 

 

Supplementary Figure 4.3: speed pairwise comparison of treatments  
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Supplementary Table 4.4: Loop for permutation: example for the comparison of the pre-festival and festival data using 
the ks.test 

loop for pre-festival vs. festival 
n = 1000 
result <- data.frame(p_value = rep(NA,n), valueW = NA) 
for (i in 1:n){ 
 hmm.new <- hmm_data %>%  
 group_by(ID) %>%  
 sample_n(170) 
  
result.test <- ks.test(abs(hmm.new$angle[hmm.new$treatment== "pre-festival"]) 
,abs(hmm.new$angle[hmm.new$treatment== "festival"])) 
 
result$p_value[i] <- result.test$p.value 
result$valueW[i] <- result.test$statistic 
} 
result_pre_fest <- result 
mean(result_pre_fest$p_value) 
0.1138248 

 

 

 

Supplementary Figure 4.4: all turning Angels of all hedghogs 
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Supplementary Figure 4.5: Raw data latitude of the centroid values per day over time construction work started at the 
28th of August and ended on the 16th September  

 

Supplementary Figure 4.6: Rawdata longitude of the centroid values per day over time construction work started at the 
28th of August and ended on the 16th September 
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Supplementary Figure 4.7: left longitudinal data, right: latidudinal data  

Supplementary Table 4.5: Linear model and outcome of ANOVA of longitudinal data and latitudinal  

mod_nom_x <- lmer(sqrt(change_x) ~ treatment*sex + (1 |animal_id), res.fest) 
car::Anova(mod_nom_x) 
## Analysis of Deviance Table (Type II Wald chisquare tests) 
##  
## Response: sqrt(change_x) 
## Chisq Df Pr(>Chisq)  
## treatment 80.5897 1 < 2.2e-16 *** 
## sex 0.3572 1 0.55  
## treatment:sex 21.4375 1 3.655e-06 *** 
 

mod_nom_y <- lmer(sqrt(change_y) ~ treatment*sex + (1 |animal_id), res.fest) 
 
car::Anova(mod_nom_y) 
## Analysis of Deviance Table (Type II Wald chisquare tests) 
##  
## Response: sqrt(change_y) 
## Chisq Df Pr(>Chisq)  
## treatment 80.858 1 < 2.2e-16 *** 
## sex 0.886 1 0.3465542  
## treatment:sex 11.790 1 0.0005954 *** 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

 

Supplementary Table 4.6: Linear model, outcome of ANOVA and results of the multiple comparisons for balled up 
behaviour  

car::Anova(glmer(cbind(bu, all - bu) ~ treatment*sex + (1 | hedgehog.id), 
  data = daily.data,  
  family = binomial)) 
 
Analysis of Deviance Table (Type II Wald chisquare tests) 
##  
## Response: cbind(bu, all - bu) 
##   Chisq Df Pr(>Chisq)  
## treatment 598.4354 2 < 2.2e-16 *** 
## sex  0.4289 1 0.512551  
## treatment:sex 11.8406 2 0.002684 **  
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## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
summary(glht(gm1, linfct = mcp(inter_Treat_Sex = K))) 
##  
## Simultaneous Tests for General Linear Hypotheses 
##  
## Multiple Comparisons of Means: User-defined Contrasts 
##  
##  
## Fit: glmer(formula = cbind(bu, all - bu) ~ inter_Treat_Sex + (1 |  
## hedgehog.id), data = daily.data, family = binomial) 
##  
## Linear Hypotheses: 
##     Estimate Std. Error z value Pr(>|z|) 
## pre-festival_m - pre-festival_f == 0 0.03941 0.25135 0.157 1.000 
## festival_f - pre-festival_f == 0 0.15268 0.01015 15.040 <1e-04*** 
## festival_m - pre-festival_m == 0 0.20006 0.01022 19.571 <1e-04 *** 
## fragmented_f - pre-festival_f == 0 0.20941 0.25133 0.833 0.929 
## fragmented_m - pre-festival_m == 0 -0.12687 0.25162 -0.504 0.992 
## fragmented_m - fragmented_f == 0 -0.29687 0.25160 -1.180 0.755 
##       
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## (Adjusted p values reported -- single-step method) 

 

 

 

Supplementary Figure 4.8: mean proportion of balling up behaviour against treatments, whiskers indicate confidence 
interval  

Supplementary Table 4.7: Linear model, outcome of ANOVA and results of the multiple comparisons of walking 
behaviour  

car::Anova(glmer(cbind(w, all - w) ~ treatment*sex + (1 | hedgehog.id), 
  data = daily.data,  
  family = binomial)) 
## Analysis of Deviance Table (Type II Wald chisquare tests) 
##  
## Response: cbind(w, all - w) 
##  Chisq Df Pr(>Chisq)  
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## treatment 9.5608 2 0.008393 ** 
## sex  0.0205 1 0.886235  
## treatment:sex 1.9247 2 0.381989  
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
##  
## Simultaneous Tests for General Linear Hypotheses 
##  
## Multiple Comparisons of Means: User-defined Contrasts 
##  
##  
## Fit: glmer(formula = cbind(w, all - w) ~ inter_Treat_Sex + (1 | hedgehog.id),  
## data = daily.data, family = binomial) 
##  
## Linear Hypotheses: 
##     Estimate Std. Error z value Pr(>|z|) 
## pre-festival_m - pre-festival_f == 0 0.10452 0.17186 0.608 0.9812 
## festival_f - pre-festival_f == 0 0.01557 0.01133 1.374 0.6211 
## festival_m - pre-festival_m == 0 0.02970 0.01110 2.675 0.0419 * 
## fragmented_f - pre-festival_f == 0 0.27632 0.17184 1.608 0.4536 
## fragmented_m - pre-festival_m == 0 0.02479 0.17218 0.144 1.0000 
## fragmented_m - fragmented_f == 0 -0.14701 0.17215 -0.854 0.9220 
##      

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## (Adjusted p values reported -- single-step method) 

 

 

 

Supplementary Figure 4.9: mean proportion of walking behaviour against treatments, whiskers indicate confidence 
interval  
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Supplementary Table 4.8: Linear model, outcome of ANOVA and results of the multiple comparisons of resting 
behaviour 

## Analysis of Deviance Table (Type II Wald chisquare tests) 
##  
## Response: cbind(ar, all - ar) 
##   Chisq Df Pr(>Chisq)  
## treatment 203.2121 2 < 2.2e-16 *** 
## sex  0.2557 1 0.6131  
## treatment:sex 54.6765 2 1.34e-12 *** 
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Simultaneous Tests for General Linear Hypotheses 
##  
## Multiple Comparisons of Means: User-defined Contrasts 
##  
##  
## Fit: glmer(formula = cbind(ar, all - ar) ~ inter_Treat_Sex + (1 |  
## hedgehog.id), data = daily.data, family = binomial) 
##  
## Linear Hypotheses: 
##     Estimate Std. Error z value Pr(>|z|) 
## pre-festival_m - pre-festival_f == 0 -0.22498 0.22531 -0.999 0.860 
## festival_f - pre-festival_f == 0 -0.20539 0.01335 -15.391 <0.001 *** 
## festival_m - pre-festival_m == 0 -0.06227 0.01458 -4.269 <0.001 *** 
## fragmented_f - pre-festival_f == 0 -0.45706 0.22532 -2.028 0.211 
## fragmented_m - pre-festival_m == 0 0.08880 0.22570 0.393 0.997 
## fragmented_m - fragmented_f == 0 0.32088 0.22571 1.422 0.587 

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## (Adjusted p values reported -- single-step method) 

 

 

Supplementary Figure 4.10: mean proportion of behaviour identified as resting against treatment 
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Supplementary Table 4.9: Linear model, outcome of ANOVA and results of the multiple comparisons of other (not 
identified) behaviour 

# Analysis of Deviance Table (Type II Wald chisquare tests) 
##  
## Response: cbind(other, all - other) 
##   Chisq Df Pr(>Chisq)  
## treatment 248.2961 2 <2e-16 *** 
## sex  0.1481 1 0.7004  
## treatment:sex 105.6829 2 <2e-16 *** 
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Simultaneous Tests for General Linear Hypotheses 
##  
## Multiple Comparisons of Means: User-defined Contrasts 
##  
## Fit: glmer(formula = cbind(other, all - other) ~ inter_Treat_Sex +  
## (1 | hedgehog.id), data = daily.data, family = binomial) 
##  
## Linear Hypotheses: 
## Estimate Std. Error z value Pr(>|z|) 
## pre-festival_m - pre-festival_f == 0 -0.048830 0.190356 -0.257 0.999679 
## festival_f - pre-festival_f == 0 -0.040495 0.009461 -4.280 0.000107 *** 
## festival_m - pre-festival_m == 0 -0.179777 0.009839 -18.272 < 1e-04 *** 
## fragmented_f - pre-festival_f == 0 -0.260492 0.190355 -1.368 0.625203 
## fragmented_m - pre-festival_m == 0 0.008588 0.190594 0.045 1.000000 
## fragmented_m - fragmented_f == 0 0.220250 0.190591 1.156 0.770731 
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## (Adjusted p values reported -- single-step method) 

 

  

Supplementary Figure 4.11: left: estimates in pairwise comparisons; whiskers indicate 95% confidence interval right 
mean proportion of behaviour not classified other, whiskers indicate confidence interval  
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Supplementary Figure 4.12: Estimates of Degree of Functional Coupling pairwise comparison  
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Supplementary Table 4.10: Nesting details 

Sex Hedge-
hog ID 

Trac
king 
peri
od 
(day
s) 

To
tal 
N
o. 
of 
ne
sts 

Tot
al 
No. 
of 
cha
nge
s 

Days
/nest 

Da
ys/ 
cha
nge 

D
ay
s 
no
r-
m
al 

Da
ys 
fest
ival 

N
o. 
of 
ne
sts 
no
r-
m
al 

No. 
of 
nes
ts 
fest
ival 

Da
ys/ 
nes
t 
nor
mal 

Da
ys/ 
nes
t 
fest
ival 

No. 
of 
cha
nge
s 
nor
mal 

No. 
of 
cha
nge
s 
festi
val 

Da
ys/ 
cha
nge 
nor
mal 

Da
ys/ 
cha
nge 
fest
ival 

Mal
es 

1 41 9 8 4.55 5.1 23 18 5 6 4.6 3.0 3 5 7.7 3.6 

 5 19 5 5 3.8 3.8 19 0 5 0 3.8  4 1 4.8 0 

 9 42 10 20 4.2 2.1 24 18 6 5 4.0 3.6 14 6 1.7 3.0 

 11 33 5 18 6.6 1.8 18 14 4 4 4.5 3.5 7 11 2.6 1.3 

 14 42 8 19 5.25 2.2 24 18 5 5 4.8 3.6 9 10 2.7 1.8 

 18 42 5 4 8.4 10.5 24 18 3 3 8 6.0 0 4 23.0 4.5 

 19 42 9 14 4.66 3.0 24 18 7 4 3.4 4.5 10 4 2.4 4.5 

 21 42 8 23 5.25 1.8 24 18 5 7 4.8 2.6 8 15 3.0 1.2 

 22 35 9 22 3.88 1.6 17 18 6 7 2.8 2.6 11 11 1.5 1.6 

   7.6 14.8 5.2 3.6   5.1 4.6 4.5 3.7 7.3 7.4 5.5 2.4 

Fem
ales 

2 42 4 11 10.5 3.8 24 18 4 2 6.0 9.0 6 5 4.0 3.6 

 7 42 2 5 21 8.4 24 18 2 1 12.0 18.0 5 0 4.8 19.0 

 8 41 6 8 6.83 5.1 23 18 2 5 11.5 3.6 0 8 22.0 2.3 

 13 42 9 15 4.66 2.8 24 18 7 5 3.4 3.6 9 6 2.7 3.0 

 16 42 6 14 7 3.0 24 18 6 3 4.0 6.0 9 5 2.7 3.6 

 17 42 6 9 7 4.7 24 18 5 3 4.8 6.0 6 3 4.0 6.0 

 20 39 4 3 9.75 13.0 21 18 4 1 5.3 18.0 3 0 7.0 19.0 

 24 23 2 3 11.5 7.7 6 17 1 2 6.0 8.5 0 3 5.00 5.7 

   4.9 8.5 9.8 6.1   3.9 2.8 6.6 9.1 4.8 3.8 6.5 7.8 
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Traits um die Fragmentierung der Parks darzustellen  
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Supplementary Figure 4.13: Empirical Cumulative Distribution Function of Distance to the next path, indicating the 
fragmentation of the habitat 

There was no differnces between sexes in the distance to path so the following comparison are 

for the whole datasets. There was no differences between the undisturbed and disturbed data. 

But all three differ significantly from a random number: showing the near association of 

hedgehogs in the fragmented habitat nearer to path. 
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Supplementary Table 4.11: Nest protocol 

Date Time Recorder 
 

GPS-Nest 
 
 

Nest-ID 

 

Hedgehog-ID Transmission frequency 
 

Type of nest (1-6) 
1) In hollow tree or stump 2) 
under human left-overs 
(garbage/plastic) 3) in burrow 4) 
under a thin layer of leaves, 5) 
supported by branches/twigs or 
deadwood 6) thick layer of 

leaves  multiple choice 
possible 
 

Shrub-density light/medium/ 
denselight = it is possible to 
walk through the shrub without 
touching the plants, unrestricted 
view; medium = you touch 
some plants by passing through 
the shrub, light restricted view; 
dense = you cannot walk 
through the shrub without 
touching, restricted view 
 

Distance meadow [m] 
shortest distance to closest 
meadow 

Distance path/road [m] 
shortest distance to closest 
path/road 

Nest-diameter 
 

Nest-height Direction entrance/exit 
hold compass over nest 
entrance/exit and determine 
degree (0° - 360°) 
 

Nest-material Plants at the nest 
Plants that touch/support/are a 
part of the nest 
 
 
 
Groundcover yes / no 
 
The vegetation, which covers 
the area (ground) around the 
nest, is used and noticed as 
allocated type of vegetation. E.g. 
Ivy or yellow archangel 

Plants around the nest (5m) 
maple, beech, hornbeam, horse-
chestnut, poplar, oak, elm, 
robinia, lime, rhus typhina, black 
walnut, ash, yew, plane, willow, 
elder, mock orange bush, 
blackthorn, honeysuckle, 
whitethorn, clematis, common 
hazel, privet, ilex, rosa canina, 
currant, blackberry/dewberry, 
rubus odoratus, snowberry, 
dogwood, spindle tree, evening 
primrose, goldenrod, celandine, 
nettle, yellow archangel, ivy, wild 
hop 
 
 

Anomalies 
 
e.g. nest open; hedgehog visible; special structure; unusual surrounding etc. 
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Supplementary Table 4.12: Nest survival raw data Treptower Park 2016 

sex individual nest nesttime censor coding research_interval disturbance 

m 1 a 5 yes 0 before no 

m 1 b 2 no 1 before no 

m 1 c 11 yes 0 before no 

m 1 c 3 no 1 during disturb 

m 1 d 6 no 1 during disturb 

m 1 e 1 no 1 during disturb 

m 1 f 2 no 1 during disturb 

m 1 g 1 no 1 during disturb 

m 1 h 5 yes 0 during disturb 

m 1 h 1 no 1 after no 

m 1 i 4 yes 0 after no 

f 2 a 5 yes 0 before no 

f 2 b 2 no 1 before no 

f 2 a 2 no 1 before no 

f 2 b 1 no 1 before no 

f 2 a 1 no 1 before no 

f 2 b 1 no 1 before no 

f 2 c 7 yes 0 before no 

f 2 c 8 no 1 during  disturb 

f 2 d 1 no 1 during  disturb 

f 2 c 1 no 1 during  disturb 

f 2 d 1 no 1 during  disturb 

f 2 c 2 no 1 during  disturb 

f 2 d 5 no 1 during  disturb 

f 2 d 5 yes 0 after no 

m 5 a 2 yes 0 before no 

m 5 b 1 no 1 before no 

m 5 a 10 no 1 before no 

m 5 c 4 no 1 before no 

m 5 d 1 no 1 before no 

m 5 e 1 yes 0 before no 

f 7 a 4 yes 0 before no 

f 7 b 1 no 1 before no 

f 7 a 1 no 1 before no 

f 7 b 1 no 1 before no 

f 7 a 1 no 1 before no 

f 7 b 11 yes 0 before no 

f 7 b 10 yes 0 during disturb 

f 7 b 2 yes 0 after no 

f 8 a 16 yes 0 before no 

f 8 b 1 yes 0 before no 

f 8 c 1 no 1 during disturb 

f 8 d 5 no 1 during disturb 

f 8 e 6 no 1 during disturb 

f 8 d 1 no 1 during disturb 

f 8 e 2 no 1 during disturb 

f 8 f 1 no 1 during disturb 

f 8 g 2 yes 0 during disturb 

f 8 g 5 yes 0 after no 

m 9 a 2 yes 0 before no 

m 9 b 1 no 1 before no 

m 9 a 1 no 1 before no 

m 9 b 1 no 1 before no 

m 9 c 1 no 1 before no 

m 9 a 1 no 1 before no 

m 9 c 1 no 1 before no 

m 9 d 1 no 1 before no 

m 9 c 2 yes 0 before no 

m 9 d 1 no 1 before no 

m 9 c 1 no 1 before no 
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m 9 d 1 no 1 before no 

m 9 e 1 no 1 before no 

m 9 d 1 yes 0 before no 

m 9 f 1 yes 0 before no 

m 9 f 1 no 1 during disturb 

m 9 d 1 no 1 during disturb 

m 9 f 2 yes 0 during disturb 

m 9 f 3 no 1 during disturb 

m 9 g 1 no 1 during disturb 

m 9 h 6 no 1 during disturb 

m 9 i 2 yes 0 during disturb 

m 9 j 5 yes 0 after no 

m 10 a 1 yes 0 before no 

m 10 b 1 yes 0 before no 

m 10 a 1 yes 0 before no 

m 10 c 5 yes 0 before no 

m 11 a 5 yes 0 before no 

m 11 b 2 no 1 before no 

m 11 a 1 no 1 before no 

m 11 c 3 no 1 before no 

m 11 b 1 no 1 before no 

m 11 c 1 no 1 before no 

m 11 a 1 no 1 before no 

m 11 c 4 no 1 before no 

m 11 d 1 yes 0 before no 

m 11 c 3 no 1 during disturb 

m 11 d 1 no 1 during disturb 

m 11 c 1 no 1 during disturb 

m 11 e 1 no 1 during disturb 

m 11 d 1 no 1 during disturb 

m 11 a 1 no 1 during disturb 

m 11 e 2 no 1 during disturb 

m 11 d 1 no 1 during disturb 

m 11 e 2 no 1 during disturb 

m 11 d 1 no 1 during disturb 

f 13 a 1 yes 0 before no 

f 13 b 1 no 1 before no 

f 13 c 2 no 1 before no 

f 13 d 7 no 1 before no 

f 13 c 1 no 1 before no 

f 13 e 2 no 1 before no 

f 13 d 1 no 1 before no 

f 13 f 1 no 1 before no 

f 13 e 2 no 1 before no 

f 13 d 1 yes 0 before no 

f 13 d 1 no 1 during disturb 

f 13 e 1 no 1 during disturb 

f 13 d 1 no 1 during disturb 

f 13 g 2 no 1 during disturb 

f 13 f 8 no 1 during disturb 

f 13 h 5 yes 0 during disturb 

f 13 i 5 yes 0 after no 

m 14 a 2 yes 0 before no 

m 14 b 4 no 1 before no 

m 14 a 3 no 1 before no 

m 14 b 2 no 1 before no 

m 14 a 1 no 1 before no 

m 14 b 1 no 1 before no 

m 14 c 1 no 1 before no 

m 14 b 1 no 1 before no 

m 14 d 1 no 1 before no 

m 14 b 3 yes 0 before no 

m 14 d 1 no 1 during disturb 

m 14 e 7 no 1 during disturb 

m 14 f 1 no 1 during disturb 

m 14 e 1 no 1 during disturb 
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m 14 f 1 no 1 during disturb 

m 14 g 1 no 1 during disturb 

m 14 f 1 no 1 during disturb 

m 14 g 1 no 1 during disturb 

m 14 h 1 no 1 during disturb 

m 14 g 3 yes 0 during disturb 

m 14 g 5 yes 0 after no 

f 16 a 1 yes 0 before no 

f 16 b 2 no 1 before no 

f 16 a 1 no 1 before no 

f 16 c 1 no 1 before no 

f 16 d 1 no 1 before no 

f 16 c 1 no 1 before no 

f 16 a 1 no 1 before no 

f 16 d 2 no 1 before no 

f 16 a 1 no 1 before no 

f 16 d 7 no 1 before no 

f 16 e 1 yes 0 before no 

f 16 d 1 no 1 during disturb 

f 16 e 3 no 1 during disturb 

f 16 d 9 no 1 during disturb 

f 16 f 5 yes 0 during disturb 

f 16 f 5 yes 0 after no 

f 17 a 1 yes 0 before no 

f 17 b 1 no 1 before no 

f 17 a 2 no 1 before no 

f 17 b 10 no 1 before no 

f 17 c 3 no 1 before no 

f 17 d 1 no 1 before no 

f 17 e 1 yes 0 before no 

f 17 e 10 no 1 before disturb 

f 17 f 5 no 1 before disturb 

f 17 c 3 yes 0 during disturb 

f 17 c 2 no 1 after no  

f 17 e 2 no 1 after no  

f 17  1 yes 0 after no  

m 18 a 18 yes 0 before no 

m 18 b 1 yes 0 before no 

m 18 c 4 no 1 during disturb  

m 18 d 8 no 1 during disturb  

m 18 e 6 yes 0 during disturb  

m 18 e 5 yes 0 after no  

m 19 a 1 yes 0 before no 

m 19 b 2 no 1 before no 

m 19 a 1 no 1 before no 

m 19 c 1 no 1 before no 

m 19 b 1 no 1 before no 

m 19 d 5 no 1 before no  

m 19 c 1 no 1 before no  

m 19 d 2 no 1 before no  

m 19 e 1 no 1 before no  

m 19 d 4 yes 0 before no  

m 19 d 3 no 1 during disturb 

m 19 f 3 no 1 during disturb 

m 19 g 3 no 1 during disturb 

m 19 h 6 no 1 during disturb 

m 19 g 3 yes 0 during disturb 

m 19 g 3 no 1 after no 

m 19 i 2 yes 0 after no 

f 20 a 1 yes 0 before no 

f 20 b 3 no 1 before no 

f 20 c 8 no 1 before no 

f 20 d 18 yes 0 during  disturb 

f 20 d 5 yes 0 after no 

m 21 a 3 yes 0 before no 

m 21 b 1 no 1 before no 
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m 21 c 1 no 1 before no 

m 21 b 8 no 1 before no 

m 21 d 1 yes 0 before no 

m 21 b 1 no 1 before no 

m 21 c 1 no 1 before no 

m 21 d 1 yes 0 before no 

m 21 b 1 no 1 during disturb 

m 21 c 1 no 1 during disturb 

m 21 b 1 no 1 during disturb 

m 21 d 2 no 1 during disturb 

m 21 b 1 no 1 during disturb 

m 21 e 1 no 1 during disturb 

m 21 f 1 no 1 during disturb 

m 21 e 3 no 1 during disturb 

m 21 b 2 no 1 during disturb 

m 21 g 1 no 1 during disturb 

m 21 e 1 no 1 during disturb 

m 21 c 1 no 1 during disturb 

m 21 g 1 no 1 during disturb 

m 21 h 1 yes 0 during  disturb 

m 21 h 3 no 1 after no 

m 21 d 2 yes 0 after no 

m 22 a 1 yes 0 before no 

m 22 b 2 no 1 before no 

m 22 c 2 no 1 before no 

m 22 d 1 no 1 before no 

m 22 c 1 no 1 before no 

m 22 d 2 no 1 before no 

m 22 c 1 no 1 before no 

m 22 d 1 no 1 before no 

m 22 c 1 yes 0 before no 

m 22 d 1 no 1 during disturb 

m 22 a 4 no 1 during disturb 

m 22 e 1 no 1 during disturb 

m 22 f 3 no 1 during disturb 

m 22 g 2 no 1 during disturb 

m 22 h 1 no 1 during disturb 

m 22 i 2 no 1 during disturb 

m 22 h 1 no 1 during disturb 

m 22 j 1 no 1 during disturb 

m 22 h 1 no 1 during disturb 

m 22 g 1 yes 0 during  disturb 

m 22 h 1 no 1 after no 

m 22 g 2 no 1 after no 

m 22 h 1 no 1 after no 

m 22 g 1 yes 0 after no 

m 23 a 2 yes 0 after no 

f 24 a 9 no 1 during disturb 

f 24 b 1 no 1 during  disturb 

f 24 a 5 no 1 during  disturb 

f 24 b 3 yes 0 during  disturb 

f 24 b 5 yes 0 after no 
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Supplementary Table 4.13: Table Nesting Data from Tierpark 2017  

sex individual nest nesttime censor coding 

f 4 a 5 yes 0 

f 4 b 26 no 1 

f 4 c 5 no 1 

f 4 b 1 no 1 

f 4 c 1 yes 0 

f 4 d 1 yes 0 

m 8 a 4 yes 0 

m 8 b 1 no 1 

m 8 a 3 no 1 

m 8 c 1 no 1 

m 8 a 1 no 1 

m 8 d 1 no 1 

m 8 e 1 no 1 

m 8 d 2 no 1 

m 8 e 1 no 1 

m 8 d 4 no 1 

m 8 e 1 no 1 

m 8 d 5 no 1 

m 8 f 11 yes 0 

m 9 a 1 yes 0 

m 9 b 1 no 1 

m 9 c 5 no 1 

m 9 d 1 yes 0 

m 9 c 2 no 1 

m 9 a 1 no 1 

m 9 c 2 no 1 

m 9 a 2 no 1 

m 9 e 1 no 1 

m 9 f 1 yes 0 

m 9 a 4 no 1 

m 9 g 1 yes 0 

m 9 h 1 no 1 

m 9 a 1 no 1 

m 9 h 12 yes 0 

m 19 a 15 yes 0 

m 19 b 1 no 1 

m 19 a 5 no 1 

m 19 b 2 no 1 

m 19 a 1 no 1 

m 19 b 12 yes 0 

f 20 a 1 yes 0 

f 20 b 1 no 1 

f 20 a 1 no 1 

f 20 b 1 no  1 

f 20 a 1 no 1 

f 20 b 9 no 1 

f 20 a 1 no 1 

f 20 b 23 yes 0 

m 23 a 1 yes 0 

m 23 b 1 no 1 

m 23 a 2 no 1 

m 23 b 4 no 1 

m 23 c 2 no 1 

m 23 a 1 no 1 

m 23 c 10 yes 0 

m 27 a 1 yes 0 

m 27 b 9 no 1 

m 27 c 1 no 1 

m 27 b 2 no 1 

m 27 c 17 yes 0 

m 30 a 2 yes 0 
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m 30 b 1 no 1 

m 30 a 3 no 1 

m 30 c 1 no 1 

m 30 a 1 yes 1 

m 30 c 1 no 1 

m 30 a 1 no 1 

m 30 c 3 no 1 

m 30 a 1 no 1 

m 30 c 1 no 1 

m 30 a 1 no 1 

m 30 c 1 no 1 

m 30 a 7 no 1 

m 30 d 1 no 1 

m 30 a 1 no 1 

m 30 d 3 no 1 

m 30 c 1 no 1 

m 30 d 1 no 1 

m 30 c 4 no 1 

m 30 d 1 yes 0 

m 31 a 1 yes 0 

m 31 b 2 no 1 

m 31 c 1 yes 0 

m 31 d 1 yes 0 

m 31 e 1 no 1 

m 31 f 1 yes 0 

m 31 b 1 no 1 

m 31 g 2 no 1 

m 31 h 2 no 1 

m 31 g 1 no 1 

m 31 i 1 no 1 

m 31 g 1 no 1 

m 31 i 1 no 1 

m 31 g 5 yes 0 

f 32 a 1 yes 0 

f 32 b 1 no 1 

f 32 c 1 no 1 

f 32 b 1 no 1 

f 32 d 34 yes 0 

m 35 a 1 yes 0 

m 35 b 1 no 1 

m 35 a 1 no 1 

m 35 c 1 no 1 

m 35 d 2 no 1 

m 35 a 1 no 1 

m 35 d 2 no 1 

m 35 b 1 no 1 

m 35 e 2 no 1 

m 35 d 1 no 1 

m 35 e 12 no 1 

m 35 f 1 no 1 

m 35 e 2 no 1 

m 35 d 3 no 1 

m 35 f 3 no 1 

m 35 d 1 no 1 

m 35 f 2 yes 0 
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5 Supplementary information Chapter 5: Music festival makes 

hedgehogs move: How individuals cope behaviourally in response 

to human-induced stressors 

GPS and ACC data are available through the Movebank platform (www.movebank.org) by 

contacting the authors. The supplementary table S3 has the data from which the SVM model was 

built. 

Supplementary Table 5.1: Overview over Wilcoxon test results for the different parameters to compare daily values of 
pre-festival period with them of festival period. Significant differences are marked by bold font. KDE50 = 50% Kernel 
Density Estimation , DI = Diurnality Index, TSdusk = Time Span between activity onset and civil dusk, ODBA = 
Overall Dynamic Body Acceleration, DFC = Degree of Functional Coupling 

Animal 
ID 

sex KDE50 DI TSdusk ODBA DFC 

01_2016 m 
W = 223  
p-value = 

0.3653 

W = 229 
p-value = 
0.03421 

W = 50 
p-value = 
0.0007493 

W = 167 
p-value = 

0.1486 

W = 235.5 
p-value = 

0.2023 

02_2016 f 
W = 210 

 p-value = 
0.5877 

W = 212  
p-value = 

0.1182 

W = 182  
p-value = 

0.5418 

W = 69  
p-value = 

0.9771 

W = 186  
p-value = 

0.9216 

08_2016 f 
W = 269  
p-value = 
0.008537 

W = 191  
p-value = 

0.1093 

W = 5  
p-value = 
3.257e-08 

W 0 174 
p-value = 
0.001498 

W = 318  
p-value = 
0.0003322 

09_2016 m 
W = 128  
p-value = 
0.01339 

W = 108  
p-value = 
0.04699 

W = 55  
p-value = 

0.3574 
- 

W = 128  
p-value = 
0.01339 

13_2016 f 
W = 196  
p-value = 

0.8786 

W = 214 
p-value = 

0.1991 

W = 49 
p-value = 
0.0003467 

W = 98 
p-value = 

0.8123 

W = 259 
p-value = 
0.02277 

17_2016 f 
W = 284  
p-value = 
0.0003577 

W = 147 
p-value = 

0.709 

W = 65 
p-value = 
0.05227 

W = 162 
p-value = 
0.01007 

W = 228.5 
p-value = 

0.2854 

19_2016 m 
W = 297 

 p-value = 
0.002121 

W = 132 
p-value = 

0.3626 

W = 86 
p-value = 
0.02685 

W = 87 
p-value = 

0.3134 

W = 253 
p-value = 
0.03291 

21_2016 m 
W = 271  
p-value = 
0.02249 

W = 189 
p-value = 

0.599 

W = 82 
p-value = 
0.01859 

W = 160 
p-value = 

0.1195 

W = 287 
p-value = 
0.006603 

http://www.movebank.org/
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Supplementary Table 5.2: Results for the kde 50 for all individuals. Undisturbed corresponds to the pre-festival phase, 
disturbed corresponds to the festival phase 

Animal ID disturbance_lvl kde50_area sex ci 

Igel01/2016/TP undisturbed 3.1 m 1.5 
Igel01/2016/TP disturbed 2.14 m 0.853 
Igel02/2016/TP undisturbed 2.02 f 0.552 
Igel02/2016/TP disturbed 1.93 f 0.507 
Igel08/2016/TP undisturbed 1.99 f 0.448 
Igel08/2016/TP disturbed 1.09 f 0.456 
Igel09/2016/TP undisturbed 3.59 m 0.75 
Igel09/2016/TP disturbed 2.12 m 0.811 
Igel13/2016/TP undisturbed 1.07 f 0.292 
Igel13/2016/TP disturbed 1.04 f 0.252 
Igel17/2016/TP undisturbed 1.46 f 0.322 
Igel17/2016/TP disturbed 0.603 f 0.349 
Igel19/2016/TP undisturbed 3.02 m 0.85 
Igel19/2016/TP disturbed 1.26 m 0.513 
Igel21/2016/TP undisturbed 4.36 m 0.821 
Igel21/2016/TP disturbed 2.92 m 0.963 

 

Raw data for the model are stored and are available from Anne Berger  
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